Semantics Bootcamp Part I: Fundamentals

Elizabeth Coppock
NASSLLI 2012, Austin Texas

1 Semantics

Semantics: The study of meaning. What imeaning? How can you tell whether
somebody or somethingnderstands? Does Google understand language?

An argument that it does not: Google can'tidéerences
(1) Everyone who smokes gets caneeNo heavy smoker avoids cancer

(cf. “No alleged smoker avoids cancer”...)

A hallmark of a system or agent that understands languagaspgmeaning is
that it can do these kinds of inferences.

Another way to put it: A good theory of meaning should be ablad¢count for
the conditions under which one sentence implies anoth¢esea.

Some different kinds of inferences:

1. Entailment (domain of semantics): A entails B if and only if whenever A
is true, B is true too. E.ddDbama was born in 196dntailsObama was born
in the 1960s

2. Presupposition(semantics/pragmatics): A presupposes B if and only if an
utterance of A takes B for granted. ES$ue has finally stopped smoking
presupposes that Sue smoked in the recent past.

3. Conversational Implicature (pragmatics): A conversationally implicates
B if and only if a hearer can infer B from an utterance of A by mak
use of the assumption that the speaker is being cooperdiige Some of
the students passeadnversationally implicates that not all of the students
passed.

The primary responsibility for a theory gEmanticss to account for the condi-
tions under which one sentenertailsanother sentence.

Other nice things a theory of semantics could do: Accounpfesuppositions,
contradictions, equivalences, semantic ill-formedneissribution patterns.

Strategy: Assigntruth conditions to sentences. The truth conditions are the con-
ditions under which the sentence is true. Knowing the mepoia sentence does
not require knowing whether the sentence is in fact trualif cequires being able

to discriminate between situations in which the sententeiésand situations in
which the sentence is false.

(Cf. Heim & Kratzer's bold first sentence: “To know the meanof a sentence is
to know its truth conditions.”)

The strategy of assigning truth conditions will allow us teaunt for entailments.
If the circumstances under which A is true include the cirstances under which
B is true, then A entails B.

How to assign truth conditions to sentences of natural laggs like English?
Montague’s idea: Let's pretend that English is a formal lzagge.

I reject the contention that an important theoretical défece ex-
ists between formal and natural languages. ... In the prexgrer
| shall accordingly present a precise treatment, culmggaith a the-
ory of truth, of a formal language that | believe may reastnale
regarded as a fragment of ordinary English. ... The treatmieen
here will be found to resemble the usual syntax and modetyheo
semantics) [due to Tarski] of the predicate calculus, bamderather
heavily on the intuitive aspects of certain recent develept®in in-
tensional logic [due to Montague himself]. (Montague 1970488
in Montague 1974)

2 Predicate calculus

Predicate calculus is a logic. Logics are formal languaged,as such they have
syntax and semantics.

Syntax: specifies which expressions of the logic are well-formed,\&hat their
syntactic categories are.

Semantics: specifies which objects the expression correspond to, aiadl thvair
semantic categories are.

2.1 Syntax of Predicate Calculus

2.1.1 Atomic symbols

Formulas are built up from atomic symbols drawn from thedwihg syntactic
categories:

« individual constants; JOHN, MARY, TEXAS, 4...
e variables: z,y,z, 2/, y', 2/, ...
« predicate constants

— unary predicate constants EVEN, ODD, SLEEPY,..
— binary predicate constants LOVE, OWN, >, ...

« function constants

— unary function constants MOTHER, ABSOLUTE_VALUE, ...
— binary function constants DISTANCE, +, —,...

« logical connectives A, v, —, <>, -
e quantifiers: v, 3

| write constants irsMALL CAPS and variables iritalics. But | will ignore quan-
tifiers and variables today.

2.2 Syntactic composition rules

How to build complex expressions (metalanguage variabeSaeek letters):

« If 7 is an-ary predicate ands ...«,, are terms, theft(a,...q;,) IS an atomic
formula.

— If 7 is a unary predicate and is a term, thenr(«) is an atomic for-
mula.

— If mis a binary predicate ang, and«; are terms, them(ay,az) is an
atomic formula.

e If a;...a, are terms, and is a function constant with arity, themy(a, ..., a,,)
is aterm.

 If ¢ is a formula, them¢ is a formula.

* If ¢ is a formula and) is a formula, therj¢ A +] is a formula, and so are
[ov], [0~], and[¢ < ¢].

Expression Syntactic category
JOHN,MARY (individual) constant

x variable

HAPPY, EVEN unary predicate constant
LOVE, > binary predicate constant
LOVE(JOHN, MARY) (atomic) formula
HAPPY(x) (atomic) formula

x>1 (atomic) formula
MOTHER unary function constant
MOTHER(JOHN) term

2.3 Semantics of Predicate Calculus

Each expression belongs to a certain semantic type. The tyfpeur predicate
calculus areindividuals, sets, relations functions, andtruth values.

2.3.1 Sets

Set. An abstract collection of distinct objects which are called memberor
elementsf that set. Elements may be concrete (like the beige 1998tadyorolla

4

| sold in 2008, David Beaver, or your computer) or abstrake(the number 2,
the English phoneme /p/, or the set of all Swedish socceepy The elements
of a set are not ordered, and there may be infinitely many of tenone at all.

You can specify the members of a set in two ways:

1. By listing the elements, e.g.:
{Marge Homer, Bart, Lisa, Maggie}

2. By description, e.g{z|z is @ human member of the Simpsons farhily
Element. We write ‘is a member of” withe.
Empty set. Theempty setwritten @ or {}, is the set containing no elements.

Subset. A is asubsebf B, written A ¢ B, if and only if every member ofl is
a member of3.

Ac Biffforall z: if z € Athenz € B.

Proper subset. A is aproper subsebf B, written A c B, if and only if A is a
subset ofB and A is not equal taB.

Ac Biff (i) for all z: if 2 € Athenz e B and (ii) A # B.
Powerset. Thepowersebf A, writtenf’(A), is the set of all subsets cf.
P(A) ={S|S c A}

Set Union. Theunionof A andB, written Au B, is the set of all entities such
thatx is a member ofA or x is a member oB.

AuB={z|lre Aorz e B}

Set Intersection. Theintersectionof A and B, written A n B, is the set of all
entitiesz such thatr is a member ofdA andx is a member of3.

AnB={z|re Aandz € B}

5

2.3.2 Ordered pairs and relations
Ordered pair. Sets are not ordered.
{Bart Lisa} = {Lisa, Bart}

But the elements of aardered pairwritten (a, b) are ordered. Here, is thefirst
memberandb is thesecond member

(Bart Lisa) # (Lisa, Bart)
We can also have ordered triples.
{Bart Lisa, Maggie} = {Maggie Lisa, Bart}

(Bart Lisa, Maggie) + (Maggie Lisa, Bart)

Relation. A (binary) relation is a set of ordered pairs. For example,‘thder-
than’ relation among Simpsons kids:

{(Bart Lisa), (Lisa, Maggie), (Bart Maggie }
Note that this is &et How many elements does it have?

Domain. Thedomainof a relation is the set of entities that are the first member
of some ordered pair in the relation.

Range. Therangeof a relation is the set of entities that are the second member
of some ordered pair in the relation.

2.3.3 Functions

Function. A function is a special kind of relation. A relatiaR from A to B is
a function if and only if it meets both of the following conidits:

1. Each element in the domain is paired with just one elenmettits range.

2. The domain of? is equal toA

A function gives a singleutput for a giveninput.

Are these relations functions?
/1 ={(Bart Lisa), (Lisa, Maggie), (Bart Maggie) }
f2={(Bart Lisa), (Lisa, Maggie }
Easier to see when you notate them like this:

Bart — Lisa
fi= - Maggie
Lisa — Maggie

| Bart - Lisa
~| Lisa -» Maggie

f

Lambda (\) notation. Just as sets can be specified either by listing the elements
or by description, functions can be described either binltighe ordered pairs that
are members of the relation or by description. To descrihaation, the symbol

A is used.

A-terms usually follow the following schema:
Aa .y
where

« «ais the argument variable (a letter that stands for an arpigegument of
the function we are defining)

« ~is the value description (specifies the value that our fonciissigns tar)
Example:
Ar.z+1

e xis the argument variable

e x + 1 is the value description

Function application. F(a) denotes ‘the result of applying functidnto argu-
menta’ or F' of o’ or * F applied tod’. If F'is a function that contains the ordered
pair {a, b), then:

F(a)=b

This means that givemas input,F’ givesb as output.

The result of applying a function specified usihgiotation to its argument can
normally be written as the value description pay}, (with the argument substi-
tuted for the argument variable),

[M.x+1](4)=4+1=5

2.3.4 Semantic Types
Basic types:
« cisthe type of individuals; all individuals have type

« tis the type of truth values; the truth values 0 and 1 have type

Complex types:

« If o andr are semantic types, therx 7 is the type of an ordered pair whose
first element is of type and whose second element is of type

If o is atype, ther{o) is the type of sets containing elements of type

e If 01, 09,... are types, thefoy, 09, ...) is the type of a relation consisting of
ordered pairs of type; x o3 x ...

« If o andr are semantic types, thén, 7) is the semantic type of functions
whose domain is the set of entities of typend whose range is the set of
entities of typer.

Nothing else is a semantic type.

Examples:

* (e,t) is the type of functions from individuals to truth values

((e,t),t) is the type of functions from [functions from individuals timth

2.3.6 Models and interpretation functions

Interpretation with respect to a model.

Expressions of predicate calculus are

interpretedin models Models consist of a domain of individual$ and an inter-
pretation functionl which assigns values to all the constants:

values] to truth values
* (e) is the type of sets of individuals
« e x elis the type of an ordered pair of individuals

* (e,e) is the type of a binary relation among individuals

Expression Syntactic category Semantic type
JOHN,MARY (individual) constant e

HAPPY, EVEN unary predicate constant (e)

LOVE, > binary predicate constant(e, e)
LOVE(JOHN,MARY) (atomic) formula t

HAPPY(x) (atomic) formula t

z>1 (atomic) formula t

MOTHER unary function constant (e, e)
MOTHER(JOHN) term e

Domains. If ois atype, therD, is the set of things with that type. For example:

M Dt = {07 1}
* Dy ={f: fisafunction fromD, to D; }

* Die ey = 1f ¢ fis afunction fromD , to D; }

2.3.5 Settheory as meta-language

All these set-theoretic symbols are formal symbols, buy #re not part of the
language for which we are giving a semantics. They are besed to character-
ize thevaluesthat expressions of predicate calculus will have.

In that sense, we are using the language of set theory as damgtaage.

M = (D,I)

An interpretation functior[]|, built up recursively on the basis of the basic in-
terpreation functiord, assigns to every expressiarof the language (not just the

constants) aemantic value[[a]]M.

Here are two models\/, and M, (r for “real”, and f for “fantasy”/“fiction”/*fake”):

M, =(D.I,)

A/jf = <D7]f>
They share the same domain:

D = {Maggie Bart, Lisa}

In M,, Bart is happy, but Maggie and Lisa are not:

I,(HAPPY) = [[HAPPY])M" = {Bart}

In My, everybody is happy:

I;(HAPPY) = [[HAPPY]I™/ = {Maggie Bart, Lisa}

Both interpretations assign the constamt®&IE to Maggie:

I.(MAGGIE) = [MAGGIE]]" = Maggie

I;(MAGGIE) = [[MAGGIE]|™ = Maggie

What is the interpretation aciAPPY(MAGGIE)? It should come out as false in
M,, and true inM;. So what we want to get is:

[HAPPY(MAGGIE)]|M =0

[[HAPPY(MAGGIE)]|Mr =1

What tells us this?

10

2.3.7 Interpretation rules

« Constants
If ais a constant, thefiaJ] = I(a).

¢ Complex terms
If o;...cr, are terms and is a function constant with arity, then[[v(as, ...,) |

is [YIY ([aa I, oo, [lan 1Y)

 Atomic formulae
If = is ann-ary predicate and; ..., are terms[[w(ay, ..., a;,) |V = 1 iff

([aal™, .. [D™) € (=T

If 7 is a unary predicate andis a term, therf[7(«)]M =1 iff
[e [=]1"

* Negation
[-o]™ = 1if [¢]™ = 0; otherwise[-¢]]* = 0.

« Connectives
[orv]I™ =11if [¢]]™ = 1 and [¢']]M = 1; O otherise. Similarly for
[ov el [¢], and[[¢ < M.

Example. BecausedAPPY is a unary predicate and AGGIE is a term, we can
use the rule for atomic formulae to figure out the valuelePpPY(MAGGIE).

[HAPPY(MAGGIE) | = 1iff [MAGGIE]|Ms € [[HAPPY]M,
i.e. iff Maggiee {Maggie Bart Lisa}.

[HAPPY(MAGGIE)]| = 1 iff [MAGGIE]]™" € [[HAPPY]]M-,
i.e. iff Maggiee {Bart}.

How about:=HAPPY(BART) v LOVE (BART, MAGGIE) ?

3 English as a formal language

Montague: “I reject the contention that an important théoag difference exists
between formal and natural languages.”

11

So we will put (parsed) English inside the denotation bregkastead of logic.
Example:

- s 44 M

N \% = 1 iff Ann smokes (according ta/).

Ann smokes

(Wrong: [Ann smokeg ™)

Following Heim & Kratzer, | use bold face for object languagside denotation
brackets here, but often | am lazy about this.

Scientific question: What semantic composition rules do we need in order to
calculate the values of complex expressions from the valtiteeir parts?

Frege’s conjecture: All semantic composition is functional application.

3.1 Afragment of English (H&K 1998, ch. 2)
3.1.1 Inventory of denotations

(i) Elements ofD., the set of actual individuals
(i) Elements of{0,1}, the set of truth values
(iii) Functions fromD, to {0,1}

3.1.2 Lexicon
[Ann] Mo = Ann
[Jan] o = Jan
[works]Me = Az:ze€ D, .z works
[smoke§™Me = Xz:zeD,.xsmokes

12

Heim & Kratzer’s use of \-notation:

Read A\« : ¢ . v]" as either (i) or (ii), whichever makes sense.
(i) “the function which maps every such that to v”
(ii) “the function which maps every such thatp to 1, if v, and to 0 otherwise”

Notice that (lambdified) English is thmeta-languagethe language with which
we describe the semantic values that object language ekpnssnay have.

The expressionXx : x €D, . x smokes’ is supposed to describe a particular func-
tion, which we could specify more explicitly using set-thetic notation. If Ann,
Jan and Maria are the only individuals in the domainise= {Ann, Jan, Mari),

and Ann and Jan smoke and Maria does not, then:

Ann - 1
[smoke§ ™o = {{Ann,1),(Jan1),(Maria,0)} =| Jan - 1
Maria - 0

So there’s two kinds of formal stuff:
¢ meta-language)\; symbols of set theory)

« object language, when we’re considering the syntax ands#as of a for-
mal language (the symbols of predicate calculus)

3.1.3 Composition rules

Syntax-driven interpretation rules (boring)

S
(S1) Ifa hastheform "~ then [o]™ = [\]([5]").
B 0l

NP

(S2) Ifa has the form | then [a]™ = [8]™M.
B
VP

(S3) If « has the form | then [o]™ = [B]M.
B
N

(S4) If « has the form | then [o] ™ = [B5]M.
B

13

\%
(S5) Ifahastheform | then [o]™ = [S]M.
B

Type-driven interpretation rules (cool)

(2) Terminal Nodes(TN)
If o is a terminal node]a]]M is specified in the lexicon.

(3) Non-Branching Nodes(NN)
If « is a non-branching node, artlis its daughter node, thefia]]V =
s

(4) Functional Application (FA)
If « is a branching nod€,3,~} is the set olx’s daughters, anfl S]] is a
function whose domain contaifisyJ]*, then[[a]| = [BT ([7]]*).

Note: Functional applicatiorhas two meanings!
1. The process of applying a function to an argument (a.K-aetiuction”)

2. Thecomposition rulethat allows us to compute the semantic value of a
phrasegiven the semantic values of its parts.

Overview of how the compositional derivation of the truttddions for Ann
smokeswwill go:

(5) S:t (FA)
NP:eM)&) (NN)
N:e ‘(NN) V: (e,t‘) (NN)
Ann: ‘e(TN) smokes (‘e,t> (TN)

An alternative strategy would have been to tmabkesis a set of individuals, like
we treated the predicateaPPY in predicate calculus. But this would not have al-
lowed us to use Functional Application. We use tharacteristic function of
that set instead.

f is thecharacteristic function of a setS iff for all x in the relevant domain,
f(x)=1if xS, andf(x) = 0 otherwise.

14

Compositional derivation of the truth conditions:

Mo

S
/\
T
I
Ann smokes
o V‘P 4 Moy /e N‘P S+ Mo
= Y l\‘l by Functional Application
| | smokes | | [l Ann ||
I 59 Mo
, NP
- Vv 41 Mo ‘
= | l\‘l by Non-branching Nodes
smokes | |
o [l Ann]

=[[smokes]]M0 ([[Ann]]MD) by Non-branching Nodes«(3)

=[Ax:z € D, .z smoke$([[Ann]Mo) by Terminal Nodes
=[Az:x e D, . x smoke$(Ann) by Terminal Nodes

=1 iff Ann smokes. (by 5-reduction)

3.2 Transitive and ditransitive verbs

Semantics for transitive verbs. Example:

S
A
NP VP
‘ A
T
Ann likes l‘\l

Jan

15

So that we can use FA for all the branching nodes, the VP sHmrila function
from individuals to truth values (typg, t}).

So the semantic value of the transitive vikis should bea function from individ-
uals to functions from individuals to truth valués, it should have the following

type:
(e, (e,t))

For example:
Maria - 0
Jacob Jacob - 0
Maria — Maria - 1
Jacob - 1

(6) [[likes]]=Az:xzeD.[Ay:yeD.ylikesz]

(7) [likes]]([[dJan]]) =[Az:xz € D .[A\y:ye D.ylikesz]](Jan)
=Ay:yeD.ylikes Jan

(8) [[likes]I([[dan])I[ANN]] = [y : y € D . y likes Jan](Ann)
= 1iff Ann likes Jan

Ditransitive verbs. Suppose we have a phrase structure rule for ditransitive
verbs liketell, that generates sentences likeold Y about ZIt could generate
trees like this for example:

S
NP/\VP
Vv e
(9) Barack Obama to‘ld l‘\l P/\NP
Angela Merkel ab‘out l\‘l

Barack Obama

What type shouldell be? What order should the arguments come in?

16

