(6) $\llbracket \mathrm{is} \rrbracket=\lambda \mathrm{f} \in \mathrm{D}_{\langle e, t\rangle} \cdot \mathrm{f}$
(7)

$=\llbracket$ is $\rrbracket(\llbracket$ conservative $\rrbracket)($ (Rick Perry $\rrbracket)$ NN
$=\left[\lambda \mathbf{f} \in \mathrm{D}_{\langle e, t\rangle} \cdot \mathrm{f}\left(\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}\right.\right.$ is conservative $\left.]\right]$ (Rick Perry) TN
$=\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$ is conservative (Rick Perry) $\quad \beta$-reduction
$=1$ iff Rick Perry is conservative* (β-reduction)
*Notice that I wrote "= 1 iff Rick Perry is conservative" instead of "= Rick Perry is conservative". Normally, the result of β-reduction is written by replacing the λ-bound variable by the argument to which the function is being applied, but this case is different. That is because for Heim \& Kratzer, " $[\lambda \alpha: \phi . \gamma]$ " is read as either (i) or (ii), "whichever makes sense":
(i) "the function which maps every α such that ϕ to γ "
(ii) "the function which maps every α such that ϕ to 1 , if γ, and to 0 otherwise" When the value description is a sentence, it makes sense to read it in way (ii).

1.2 Rick Perry is in Texas

(8) $\llbracket \mathrm{in} \rrbracket=\lambda \mathrm{y} \in \mathrm{D}_{e} \cdot \lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}$ is in y
(9) \llbracket Texas $\rrbracket=$ Texas

1.3 Rick Perry is proud of Texas

(10) \llbracket proud $\rrbracket=\lambda \mathrm{y} \in \mathrm{D}_{e} \cdot \lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$ is proud of y
(11) $\llbracket \circ \mathrm{f} \rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}$

1.4 Rick Perry is a Republican
(12) \llbracket Republican $\rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$ is a Republican

Hey, let's make the indefinite article vacuous too:
(13) $\llbracket \mathrm{a} \rrbracket=\lambda \mathrm{f} \in \mathrm{D}_{\langle e, t\rangle} . \mathrm{f}$
(14)

2 Predicate Modification

2.1 Rick Perry is a conservative Republican

Our lexical entry for conservative from above is type $\langle e, t\rangle$:
(16) \llbracket conservative $_{1} \rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$ is conservative

If we want to use Functional Application here, we need conservative to be a function of type $\langle\langle e, t\rangle,\langle e, t\rangle\rangle$.
(17) \llbracket conservative $_{2} \rrbracket=\lambda \mathrm{f} \in \mathrm{D}_{\langle e, t\rangle} . \lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{f}(\mathrm{x})=1$ and x is conservative

Now, $\llbracket\left[{ }_{\mathrm{N}^{\prime}}\left[{ }_{\mathrm{A}}\right.\right.$ conservative $\left.{ }_{2}\right]\left[{ }_{\mathrm{N}}\right.$ Republican]] \rrbracket
$=\llbracket\left[\left[_{\mathrm{A}}\right.\right.$ conservative $\left.{ }_{2}\right] \rrbracket\left(\llbracket\left[\left[_{\mathrm{N}}\right.\right.\right.$ Republican $\left.] \rrbracket\right) \quad$ FA
$=\llbracket$ conservative ${ }_{2} \rrbracket(\llbracket$ Republican $\rrbracket) \quad \mathrm{NN}$
$=\lambda \mathrm{f} \in \mathrm{D}_{\langle e, t\rangle} \cdot \lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{f}(\mathrm{x})=1$ and x is conservative $\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$ is a Republican TN
$=\lambda \mathbf{x} \in \mathbf{D}_{e} \cdot \mathbf{x}$ is a Republican and x is conservative $\quad \beta$-reduction
This is Montague's strategy. All adjectives are $\langle\langle e, t\rangle,\langle e, t\rangle\rangle$ for him, and in predicate position, they combine with a silent noun. Despite the ungrammaticality of *Rick Perry is conservative Republican.

Alternative strategy: Use another composition rule.

(18) Predicate Modification (PM)

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[[\beta]]$ and $[[\gamma]]$ are both in $D_{\langle e, t\rangle}$, then $[[\alpha]]=\lambda x \in D_{e} \cdot[[\beta]](x)=[[\gamma]](x)=1$

Now, $\llbracket\left[{ }_{N^{\prime}}\left[{ }_{\mathrm{A}}\right.\right.$ conservative $\left.{ }_{1}\right]\left[{ }_{\mathrm{N}}\right.$ Republican $\left.]\right] \rrbracket$
$=\lambda \mathrm{x} \in D_{e} \cdot \llbracket\left[\left[_{\mathrm{A}}\right.\right.$ conservative $\left.{ }_{1}\right] \rrbracket(\mathrm{x})=\llbracket\left[{ }_{\mathrm{N}}\right.$ Republican $] \rrbracket(\mathrm{x})=1$
$=\lambda \mathrm{x} \in D_{e} \cdot \llbracket$ conservative $_{1} \rrbracket(\mathrm{x})=\llbracket$ Republican $\rrbracket(\mathrm{x})=1$
$=\lambda \mathrm{x} \in D_{e} \cdot \mathrm{x}$ is conservative and x is a Republican

2.2 Austin is a city in Texas

We can also use Predicate Modification with PP modifiers:

3 The definite article

What if we have the governor of Texas instead of Rick Perry?

3.1 The negative square root of 4

Regarding the negative square root of 4, Frege says, "We have here a case in which out of a concept-expression [i.e., an expression whose meaning is of type $\langle e, t\rangle$] a compound proper name is formed [that is to say, the entire expression is of type e] with the help of the definite article in the singular, which is at any rate permissible when one and only one object falls under the concept."
"Permissible": the denotes a function of type $\langle\langle e, t\rangle, e\rangle$ that is only defined for input predicates that characterize one single entity. In other words, the presupposes existence and uniqueness. Heim and Kratzer implement this as a restriction on the domain using the colon/dot notation:
(20) \llbracket the $\rrbracket=\lambda f \in \mathrm{D}_{\langle e, t\rangle}$: there is exactly one x such that $\mathrm{f}(\mathrm{x})=1$. the unique y such that $\mathrm{f}(\mathrm{y})=1$

So the is not a function from $D_{\langle e, t\rangle}$ to D_{e}; it is a partial function from $D_{\langle e, t\rangle}$ to D_{e}. But we can still give it the type $\langle\langle e, t\rangle, e\rangle$ if we interpret this to allow partial functions.

To flesh out Frege's analysis of this example further, Heim and Kratzer suggest that square root is a "transitive noun", with a meaning of type $\langle e,\langle e, t\rangle\rangle$, and that "of is vacuous, [[square root]] applies to 4 via Functional Application, and the result of that composes with \llbracket negative \rrbracket under predicate modification."
(21) \llbracket negative $\rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}$ is negative
(22) \llbracket square root $\rrbracket=\lambda \mathrm{y} \in \mathrm{D}_{e} . \lambda \mathrm{x} \in \mathrm{D}_{e}$. x is the square root of y
(23) $\llbracket \circ \mathrm{of} \rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x}$
(24) \llbracket four $\rrbracket=4$

So the constituents will have denotations of the following types:

3.2 Top-down evaluation

To compute the value "top-down", we put the whole tree in one big old pair of denotation brackets, and use composition rules to break down the tree. Here I am putting the name of the rule I used as a subscript on the equals sign, because I don't have enough room to put them off to the right.

8

$={ }_{P M}[[$ the $]]\left[\lambda x .\left[\left[\left.\right|_{\text {negative }} ^{\mathrm{A}}\right]\right](x)=\left[\mathrm{s}_{\text {square root }}^{\mathrm{P}}\right.\right.$
$==_{N N, F A}[[$ the $]](\lambda x$. [[negative $\left.]\right](x)=[[$ square root $]]([\underbrace{\text { of }}_{\text {of }}$
$=F A[[$ the $]](\lambda x$. [[negative $]](x)=[[$ square root $\left.]]\left(\left[\left[\begin{array}{c}\mathrm{P} \\ \left.\right|_{\mathrm{of}}\end{array}\right]\right]\left(\left[\left[\begin{array}{c}\mathrm{NP} \\ \left.\right|_{\mathrm{N}} ^{\mathrm{N}} \\ \text { four }\end{array}\right]\right]\right)\right)(x)\right)$
$=_{N N}[[$ the $]](\lambda x$.[[negative $\left.]\right](x)=[[$ square root $]]([[$ of $]]([[$ four $\left.]]))(x)=1\right)$
Now we are done breaking down the tree. No more composition rules.
\llbracket the $\rrbracket(\lambda \mathrm{x} .[[$ negative $]](\mathrm{x})=[[$ square root $]]([[$ of $]]([[$ four $]]))(\mathrm{x})=1)$
$=\llbracket$ the $\rrbracket(\lambda x .[[$ negative $]](x)=[[$ square root $]]([[$ of $]](4))(x)=1)$
$=\llbracket$ the $\rrbracket(\lambda x .[[$ negative $]](x)=[[$ square root $]]([\lambda x . x](4))(x)=1)$
$=\llbracket$ the $\rrbracket](\lambda \mathrm{x} .[[$ negative $]](\mathrm{x})=[[$ square root $]](4)(\mathrm{x})=1)$
$=\llbracket$ the $\rrbracket(\lambda x \cdot[[$ negative $]](x)=[\lambda y \cdot \lambda z \cdot z$ is a square root of $y](4)(x)=1)$
$=\llbracket$ the $\rrbracket(\lambda \mathrm{x} .[[$ negative $]](\mathrm{x})=[\lambda \mathrm{z} . \mathrm{z}$ is a square root of 4$](\mathrm{x})=1)$
$=\llbracket$ the $\rrbracket(\lambda x .[[$ negative $]](x)=1$ and x is a square root of 4$)$
$=\llbracket$ the $\rrbracket(\lambda x \cdot[[\lambda z . \mathrm{z}$ is negative $]](\mathrm{x})=1$ and x is a square root of 4$)$
$=\llbracket t h e \rrbracket(\lambda x . x$ is negative and x is a square root of 4$)$
$=\left[\lambda f \in D_{\langle e, t\rangle}\right.$: there is exactly one x such that $\mathrm{f}(\mathrm{x})=1$. the unique y such that $f(y)=1](\lambda x . x$ is negative and x is a square root of 4)
$=$ the unique y such that y is negative and x is a square root of 4
$=-2$

3.3 Bottom-up style

We need to compute a semantic value for every subtree/node. For convenience, we can group the nodes according to the string of words that they dominate, and start from the most deeply embedded part of the tree.

Note: I reserve the right to abbreviate e.g. $\left[_{\mathrm{PP}}\left[{ }_{\mathrm{P}}\right.\right.$ of $]{ }_{{ }_{\mathrm{NP}}}\left[{ }_{\mathrm{N}}\right.$ four]]] as [pp of four $]$, omitting all but the outermost brackets.

Bottom-up derivation

four

- \llbracket four $\rrbracket=4$
- $\llbracket\left[\left[_{\mathrm{NP}}\left[{ }_{\mathrm{N}}\right.\right.\right.$ four $\left.]\right] \rrbracket=\llbracket\left[{ }_{\mathrm{N}}\right.$ four $] \rrbracket=\llbracket$ four $\rrbracket=4$
- $\llbracket\left[{ }_{\mathrm{P}}\right.$ of $] \rrbracket=\llbracket \mathrm{of} \rrbracket=\lambda \mathrm{x} . \mathrm{x}$
offour
- $\llbracket[\mathrm{pp}$ of four $]\|=\|[\mathrm{p}$ of $\left.] \rrbracket\left(\llbracket{ }_{\mathrm{Np}} 4\right] \rrbracket\right)$

$$
=[\lambda \mathrm{x} \cdot \mathrm{x}](4)=4
$$

square root

- $\llbracket\left[{ }_{\mathrm{N}}\right.$ square root $] \rrbracket=\llbracket$ square root \rrbracket
$=\lambda \mathrm{y} \in \mathrm{D}_{e} . \lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}$ is a square root of y
square root of four
- $\llbracket\left[{ }_{\mathrm{N}}\right.$ square root of four $\rrbracket=\llbracket\left[{ }_{\mathrm{N}}\right.$ square root $] \rrbracket\left(\llbracket\left[{ }_{\mathrm{pP}}\right.\right.$ of four $\left.] \rrbracket\right)$
$\left[=\lambda \mathrm{y} \in \mathrm{D}_{e} . \lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}\right.$ is a square root of y$](4)$
$=\lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x}$ is a square root of 4
$=\lambda \mathrm{x} \in \mathrm{D}_{e} . \mathrm{x} \in\{2,-2\}$
negative

$$
\text { - } \llbracket\left[\left[_{\mathrm{A}} \text { negative }\right] \rrbracket=\llbracket \text { negative } \rrbracket=\lambda \mathrm{x} \in \mathrm{D}_{e} \cdot \mathrm{x} \text { is negative } \quad \mathrm{TN}, \mathrm{NN}\right.
$$

negative square root of four

- $\left[\left[\left[_{\mathrm{N}}\right.\right.\right.$ negative square root of four $] \rrbracket$
$=\lambda \mathrm{x} . \llbracket\left[{ }_{\mathrm{A}}\right.$ negative $] \rrbracket(\mathrm{x})=\llbracket\left[\left[_{\mathrm{N}}\right.\right.$ square root of four $] \rrbracket(\mathrm{x})=1$
$=\lambda \mathrm{x} . \mathrm{x}$ is a square root of 4 and x is negative
$=\lambda \mathrm{x} . \mathrm{x} \in\{-2\}$
the

```
- \(\llbracket\left[{ }_{\mathrm{D}}\right.\) the \(] \rrbracket=\llbracket\) the \(\rrbracket\)
\(=\lambda \mathrm{f} \in \mathrm{D}_{\langle e, t\rangle}\) : there is exactly one x s.t. \(\mathrm{f}(\mathrm{x})=1\). the y such that \(\mathrm{f}(\mathrm{y})=1\)
the negative square root of four
- 【[ [np the negative square root of four]』
\(=\llbracket\left[\left[_{\mathrm{D}}\right.\right.\) the \(] \rrbracket\left(\llbracket\left[_{\mathrm{N}}\right.\right.\) negative square root of four \(\left.] \rrbracket\right)\)
\(=\left[\lambda f \in \mathrm{D}_{\langle e, t\rangle}\right.\) : there is exactly one x such that \(\mathrm{f}(\mathrm{x})=1\). the unique y such that \(\mathrm{f}(\mathrm{y})=1](\lambda \mathrm{x} . \mathrm{x} \in\{-2\})\)
\(=\) the unique \(y\) such that \(y \in\{-2\}\)
\(=-2\)
Note that we used the same composition rules as we did using the top-down style!

This style is a little bit simpler and cleaner. But it doesn't work when you have to manipulate variable assignments... which we will cover tomorrow!```

