Semantics Bootcamp Part III: More of English

Elizabeth Coppock

NASSLLI 2012, Austin, Texas

1 Fun with Functional Application

Composition rules

For branching nodes:

(1) **Functional Application (FA)**

If α is a branching node and $\{\beta, \gamma\}$ the set of its daughters, then, for any assignment *a*, if $[\![\beta]\!]$ is a function whose domain contains $[\![\gamma]\!]$, then $[\![\alpha]\!] = [\![\beta]\!]([\![\gamma]\!])$.

For non-branching nodes:

(2) Non-branching Nodes (NN)

If α is a non-branching node and β its daughter, then, for any assignment a, $[\![\alpha]\!]=\![\![\beta]\!]$.

(3) Terminal Nodes (TN)

If α is a terminal node occupied by a lexical item, then $[\![\alpha]\!]$ is specified in the lexicon.

1.1 Rick Perry is conservative

- (4) [[Rick Perry]] = Rick Perry
- (5) $[[conservative]] = \lambda \mathbf{x} \in \mathbf{D}_e$. x is conservative

What to do with *is*? How about just an identity function:

*Notice that I wrote "= 1 iff Rick Perry is conservative" instead of "= Rick Perry is conservative". Normally, the result of β -reduction is written by replacing the λ -bound variable by the argument to which the function is being applied, but this case is different. That is because for Heim & Kratzer, "[$\lambda \alpha : \phi \cdot \gamma$]" is read as either (i) or (ii), "whichever makes sense":

(i) "the function which maps every α such that ϕ to γ "

(ii) "the function which maps every α such that ϕ to 1, if γ , and to 0 otherwise" When the value description is a sentence, it makes sense to read it in way (ii).

1.2 Rick Perry is in Texas

- (8) $\llbracket in \rrbracket = \lambda y \in D_e . \lambda x \in D_e . x \text{ is in } y$
- (9) [[Texas]] = Texas

1.3 Rick Perry is proud of Texas

- (10) $[[proud]] = \lambda y \in D_e \cdot \lambda x \in D_e \cdot x$ is proud of y
- (11) $\llbracket \text{of} \rrbracket = \lambda \mathbf{x} \in \mathbf{D}_e \cdot \mathbf{x}$

1.4 Rick Perry is a Republican

(12) [[Republican]] = $\lambda x \in D_e$. x is a Republican

2 Predicate Modification

2.1 Rick Perry is a conservative Republican

Our lexical entry for *conservative* from above is type $\langle e, t \rangle$:

(16) $[[conservative_1]] = \lambda \mathbf{x} \in \mathbf{D}_e$. x is conservative

If we want to use Functional Application here, we need *conservative* to be a function of type $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$.

(17) $[[conservative_2]] = \lambda f \in D_{(e,t)}$. $\lambda x \in D_e$. f(x) = 1 and x is conservative

Now, $\llbracket [N' [A conservative_2] [N Republican] \rrbracket$

$= \llbracket [[A conservative_2]] (\llbracket [N Republican]])$	FA
= [[conservative ₂]]([[Republican]])	NN
= $\lambda f \in D_{\langle e,t \rangle}$. $\lambda x \in D_e$. $f(x) = 1$ and x is conservative	$\lambda x \in D_e$. x is a Republican) TN

$= \lambda x \in D_e$. x is a Republican and x is conservative β -redu

This is Montague's strategy. All adjectives are $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$ for him, and in predicate position, they combine with a silent noun. Despite the ungrammaticality of **Rick Perry is conservative Republican*.

Alternative strategy: Use another composition rule.

(18) Predicate Modification (PM)

If α is a branching node, $\{\beta, \gamma\}$ is the set of α 's daughters, and $[[\beta]]$ and $[[\gamma]]$ are both in $D_{(e,t)}$, then $[[\alpha]] = \lambda x \in D_e.[[\beta]](x) = [[\gamma]](x) = 1$

Now, $\llbracket [N' [A conservative_1] [Republican]] \rrbracket$

= $\lambda \mathbf{x} \in D_e$. [[[_A conservative ₁]]](\mathbf{x}) = [[[_N Republican]]](\mathbf{x}) = 1	PM
= $\lambda \mathbf{x} \in D_e$. [[conservative ₁]](\mathbf{x}) = [[Republican]](\mathbf{x}) = 1	NN
= $\lambda \mathbf{x} \in D_e$. x is conservative and x is a Republican	β -reduction

2.2 Austin is a city in Texas

We can also use Predicate Modification with PP modifiers:

3 The definite article

What if we have *the governor of Texas* instead of *Rick Perry*?

3.1 The negative square root of 4

Regarding *the negative square root of 4*, Frege says, "We have here a case in which out of a concept-expression [i.e., an expression whose meaning is of type $\langle e, t \rangle$] a compound proper name is formed [that is to say, the entire expression is of type e] with the help of the definite article in the singular, which is at any rate permissible when one and only one object falls under the concept."

"Permissible": *the* denotes a function of type $\langle \langle e, t \rangle, e \rangle$ that is only *defined* for input predicates that characterize one single entity. In other words, *the* presupposes existence and uniqueness. Heim and Kratzer implement this as a restriction on the domain using the colon/dot notation:

(20) $[\![the]\!]=\lambda f\in D_{\langle e,t\rangle}$: there is exactly one x such that f(x)=1 . the unique y such that f(y)=1

So the is not a function from $D_{\langle e,t \rangle}$ to D_e ; it is a partial function from $D_{\langle e,t \rangle}$ to D_e . But we can still give it the type $\langle \langle e,t \rangle, e \rangle$ if we interpret this to allow partial functions.

To flesh out Frege's analysis of this example further, Heim and Kratzer suggest that *square root* is a "transitive noun", with a meaning of type $\langle e, \langle e, t \rangle \rangle$, and that "*of* is vacuous, **[[square root]]** applies to 4 via Functional Application, and the result of that composes with **[[negative]]** *under predicate modification*."

- (21) $\llbracket \text{negative} \rrbracket = \lambda \mathbf{x} \in \mathbf{D}_e$. x is negative
- (22) [[square root]] = $\lambda y \in D_e$. $\lambda x \in D_e$. x is the square root of y
- (23) $\llbracket \text{of} \rrbracket = \lambda \mathbf{x} \in \mathbf{D}_e \cdot \mathbf{x}$
- (24) [[four]] = 4

So the constituents will have denotations of the following types:

3.2 Top-down evaluation

To compute the value "top-down", we put the whole tree in one big old pair of denotation brackets, and use composition rules to break down the tree. Here I am putting the name of the rule I used as a subscript on the equals sign, because I don't have enough room to put them off to the right.

= -2

We need to compute a semantic value for every subtree/node. For convenience, we can group the nodes according to the string of words that they dominate, and start from the most deeply embedded part of the tree.

Note: I reserve the right to abbreviate e.g. $[_{PP} [_P \text{ of }] [_{NP} [_N \text{ four }]]]$ as $[_{PP} \text{ of four}]$, omitting all but the outermost brackets.

Bottom-up derivation

four

• [[four]] = 4 TN

•
$$[[[_{NP} [_{N} \text{ four}]]]] = [[[_{N} \text{ four}]]] = [[four]]] = 4$$
 NN

• $[[P_{P} of]] = [of]] = \lambda x \cdot x$ TN, NN

of four

•
$$[[_{PP} \text{ of four}]] = [[_{P} \text{ of }]]([[_{NP} 4]])$$

= $[\lambda x \cdot x](4) = 4$ FA

square root

•
$$\llbracket [[_N \text{ square root}] \rrbracket = \llbracket [\text{square root} \rrbracket]$$
 NN
= $\lambda y \in D_e$. $\lambda x \in D_e$. x is a square root of y TN

square root of four

• $\llbracket [N \text{ square root of four}] = \llbracket [N \text{ square root}]](\llbracket [PP \text{ of four}]]$]]) FA
$[= \lambda y \in D_e$. $\lambda x \in D_e$. x is a square root of y](4)	
$= \lambda \mathbf{x} \in \mathbf{D}_e$. x is a square root of 4	
$= \lambda \mathbf{x} \in \mathbf{D}_e. \ \mathbf{x} \in \{2, -2\}$	

negative

$$[[A negative]] = [[negative]] = \lambda x \in D_e$$
. x is negative TN, NN

negative square root of four

 [[[_N negative square root of four]]] 	
= λx . [[[_A negative]]](x) = [[[_N square root of four]]](x)=1	PM
= λx . x is a square root of 4 and x is negative	
$=\lambda \mathbf{x}. \mathbf{x} \in \{-2\}$	

the

•	$[[_{D} \text{ the }]] = [[\text{the }]]$	TN,	NN
	$= \lambda f \in D_{\langle e,t \rangle}$: there is exactly one x s. t. $f(x) = 1$. the y such that f	(y) =	1

the negative square root of four

•	[[_{NP} the negative square root of four]]	
	= $[[_D \text{ the }]]([[_N \text{ negative square root of four}]])$	FA
	= $[\lambda f \in D_{\langle e,t \rangle}]$: there is exactly one x such that $f(x) = 1$. the unique y s	uch
	that $f(y) = 1](\lambda x. x \in \{-2\})$	
	= the unique y such that $y \in \{-2\}$	
	= -2	

Note that we used the same composition rules as we did using the top-down style!

This style is a little bit simpler and cleaner. But it doesn't work when you have to manipulate variable assignments... which we will cover tomorrow!