
A Very Brief Overview of Quantified
First-Order Logic

Step 1: Lexicon
Our logical languages will have the following sorts of symbols:

1. Constants (typically lower-case letters from the beginning of the alphabet)

2. Predicates (typically upper-case letters, and also =) (of any number of
argument places)

3. Function Symbols (typically lower-case f or g) (of any number of argu-
ment places)

4. Variables (officially, x1, x2, . . .; unofficially, lower-case letters from the end
of the alphabet)

5. Connectives (¬, ∧, ∨, →, ↔)

6. Quantifiers (∀, ∃)

7. Parentheses

All languages will have the full collection of variables, connectives, quantifiers,
and parentheses, and all languages will contain the identity symbol =, but lan-
guages can vary in their collection of constants, (non-identity) predicates, and
function symbols (the non-logical vocabulary). The non-logical vocabulary of a
particular language is called its signature. A language will sometimes be iden-
tified in the form L(Σ), where Σ is the signature. Thus L(·) or L(·, e,−1 ) could
be a language for group theory, L(∈) a language for set theory, and L(+, 0, 1) a
language for arithmetic.

Step 2: Syntax
We first recursively define terms:

1. Any variable is a term

2. Any constant is a term

3. If f n is an n-ary function symbol, and t1, . . . , tn are terms, then f (t1, . . . , tn)
is a term

1



Next, we recursively define sentences (sometimes called formulas):

1. If Pn is an n-ary predicate and t1, . . . , tn are terms, then Pnt1 . . . tn is a
sentence

2. If t1 and t2 are terms, then t1 = t2 is a sentence

3. If A is a sentence, then ¬A is a sentence

4. If A and B are sentences, then (A ∧ B), (A ∨ B), (A→ B), and (A↔ B) are
all sentences.

5. If A is a sentence and x is a variable, then ∃x A is a sentence

6. If A is a sentence and x is a variable, then ∀x A is a sentence

An occurrence of a variable x in a sentence A is bound if it is in the scope of
an ∃x or ∀x quantifier (that is, if it is part of the smallest sentence following
the quantifier). It is free otherwise. A sentence is closed if all of its variable
occurrences are bound, and open otherwise.

Step 3: Models
A model for a language L(Σ) is an ordered pair (D, ~·�), where:

1. D is an arbitrary non-empty set (the domain of quantification)

2. ~·� is the valuation function, and has the following features:

(a) For each constant a in Σ, ~a�) ∈ D

(b) For each n-place predicate Pn in Σ, ~Pn� ∈ Dn

(c) For each n-place function symbol f n in Σ, ~ f n� ∈ {g : g : Dn
7→ D}

Step 4: Truth in a Model (Relative to an Assignment)
An assignment is a function from the set of variables to the domain of a model.
We write h[a/x] to name the assignment which maps the variable x to object
a, and maps all other variables in the same way that h maps them. We write
h ∼x h′ if h′ = h[a/x] for some a ∈ D, and call h′ an x-variant of h. First we
define an extended valuation function ~·�+

M,h which assigns, relative to a model
M and an assignment h, to each term an element of the domain:

1. For any constant a, ~a�+
M,h = ~a�

2. For any variable x, ~x�+
M,h = h(x)

3. For any function symbol Fn and terms t1, . . . , tn, ~ f n(t1, . . . , tn)�+
M,h =

~ f n�(~t1�+M,h, . . . , ~tn�+M,h)

2



We now define the truth of a sentence relative to a model and an assignment
function. We write M, h � A to mean that A is true relative to model M and
assignment h. We proceed recursively:

1. M, h � Pnt1 . . . tn iff < ~t1�+M,h, . . . , ~tn�+M,h >∈ ~P
n�

2. M, h � t1 = t2 iff ~t1�+M,h = ~t2�+M,h

3. M, h � ¬A iffM, h 2 A

4. M, h � A ∧ B iffM, h � A andM, h � B

5. M, h � A ∨ B iffM, h � A orM, h � B

6. M, h � A→ B iffM, h 2 A orM, h � B

7. M, h � A ↔ B iff either (i) M, h � A and M, h � B or (ii) M, h 2 A and
M, h 2 B

8. M, h � ∃xA iff there is some h′ ∼x h such thatM, h′ � A

9. M, h � ∀xA iff every h′ such that h′ ∼x h is such thatM, h′ � A

It can then be shown that if A is a closed sentence, then given any assignments
h and h′,M, h � A iffM, h′ � A.

Step 5: The Basic Logical Notions

1. Sentence A implies sentence B, which we write ‘A � B’, iff given any model
M and any assignment h, ifM, h � A, thenM, h � B.

2. More generally, if ∆ is a set of sentences, ∆ � B iff given any modelM and
any assignment h, if for each A ∈ ∆,M, h � A, thenM, h � B.

3. Two sentences A and B are equivalent iff given any model M and any
assignment h, M, h � A iffM, h � B. (Thus A is equivalent to B iff both
A � B and B � A.)

Step 6: Proofs
Let A, B, and C be arbitrary sentences, τ1 and τ2 be arbitrary terms, and χ
be a variable that does not occur free in C. Let A[α/β] be the sentence that
results from simultaneously replacing all occurrences of α in A with β. Then
the following sentences are axioms:

1. A→ (B→ A)

2. (A→ (B→ C))→ ((A→ B)→ (A→ C))

3. (¬A→ ¬B)→ (B→ A)

3



4. ∀χ(A→ B)→ (∀χA→ ∀χB)

5. ∀χA→ A[τ1/χ]

6. C→ ∀χC

7. τ1 = τ1

8. τ1 = τ2 → (A→ A[τ1/τ2])

Also, the following sentences are definitions:

1. (A ∧ B)→ ¬(A→ ¬B)

2. ¬(A→ ¬B)→ (A ∧ B)

3. (A ∨ B)→ (¬A→ B)

4. (¬A→ B)→ (A ∨ B)

5. (A↔ B)→ ((A→ B) ∧ (B→ A))

6. ((A→ B) ∧ (B→ A))→ (A↔ B)

Let modus ponens be the rule that takes as input any two sentences A and A→ B
and produces as output the sentence B.

A proof is a finite sequence of sentences such that each sentence on the list is
either (i) an axiom, (ii) a definition, or (iii) the result of applying modus ponens
to two sentences earlier on the list.

We say ` A if there is a proof whose final sentence is A. We say A ` B if there is a
proof whose final sentence is A→ B. We say A1, . . . ,An if there is a proof whose
final sentence is A1 → (A2 → (. . . → (An → B)) . . .). If ∆ is a set of sentences,
then we say ∆ ` B if there are A1, . . . ,An ∈ ∆ such that A1, . . . ,An ` A.

(This is only one way of setting up a proof system. We will not be very
concerned with the details of proof systems, but just with their existence and
broad outlines.)

4


