A Very Brief Overview of Quantified
First-Order Logic

Step 1: Lexicon
Our logical languages will have the following sorts of symbols:

1. Constants (typically lower-case letters from the beginning of the alphabet)

2. Predicates (typically upper-case letters, and also =) (of any number of
argument places)

3. Function Symbols (typically lower-case f or g) (of any number of argu-
ment places)

4. Variables (officially, x1, xy, . . ; unofficially, lower-case letters from the end
of the alphabet)

5. Connectives (-, A, V, —, ©)
6. Quantifiers (¥, 3)
7. Parentheses

All languages will have the full collection of variables, connectives, quantifiers,
and parentheses, and all languages will contain the identity symbol =, but lan-
guages can vary in their collection of constants, (non-identity) predicates, and
function symbols (the non-logical vocabulary). The non-logical vocabulary of a
particular language is called its signature. A language will sometimes be iden-
tified in the form £(X), where L is the signature. Thus £(-) or £(-,¢,”') could
be a language for group theory, £L(€) a language for set theory, and £(+,0,1) a
language for arithmetic.

Step 2: Syntax
We first recursively define terms:

1. Any variable is a term
2. Any constant is a term

3. If f" is an n-ary function symbol, and t4, ..., t, are terms, then f(t1,...,t,)
is a term

Next, we recursively define sentences (sometimes called formulas):

1. If P" is an n-ary predicate and #1,...,t, are terms, then P"t...t, is a
sentence

2. If t; and £, are terms, then t; = £, is a sentence
3. If A is a sentence, then —A is a sentence

4. If A and B are sentences, then (A A B), (A V B), (A — B), and (A < B) are
all sentences.

5. If A is a sentence and x is a variable, then Jx A is a sentence
6. If A is a sentence and x is a variable, then Yx A is a sentence

An occurrence of a variable x in a sentence A is bound if it is in the scope of
an dx or Vx quantifier (that is, if it is part of the smallest sentence following
the quantifier). It is free otherwise. A sentence is closed if all of its variable
occurrences are bound, and open otherwise.

Step 3: Models
A model for a language £L(X) is an ordered pair (D, [-]), where:

1. D is an arbitrary non-empty set (the domain of quantification)
2. [is the valuation function, and has the following features:

(a) For each constantain X, [[a])) € D
(b) For each n-place predicate P" in L, [P"] € D"
(c) For each n-place function symbol f*in X, [f"] € {g: g: D" — D}

Step 4: Truth in a Model (Relative to an Assignment)

An assignment is a function from the set of variables to the domain of a model.
We write hl[a/x] to name the assignment which maps the variable x to object
a, and maps all other variables in the same way that & maps them. We write
h ~¢ W if W = hla/x] for some a € D, and call /' an x-variant of h. First we
define an extended valuation function [[']]XAJ: which assigns, relative to a model
M and an assignment £, to each term an element of the domain:

1. For any constant a, [[a]]jw , = [al
2. For any variable x, [x]}, = h(x)

3. For any function symbol F" and terms #4,...,1,, [[f”(t1,...,tn)1|jwh =

L 1T - DTS,

We now define the truth of a sentence relative to a model and an assignment
function. We write M,h £ A to mean that A is true relative to model M and
assignment . We proceed recursively:

1. M,hEePy.. . t,iff < [[tl]]jw,h""'[[t”]];/t,h >e [P"]
2. Mh ety = hiff 1], = [t0},,

Mhe-Aiff Mhe A

MheAANBiff MJhe Aand M,h e B
MheAVBiff M\he Aor M,heB

Mhe A—- Biff M,h#e Aor M,hEB

N g ok @

M,h £ A & B iff either (i) M,h £ Aand M,h E B or (ii) M,h ¥ A and
M,heB

8. M, h £ AxA iff there is some ' ~, h such that M, i’ £ A
9. M,h e VxAiff every i’ such that b’ ~; his such that M, " £ A

It can then be shown that if A is a closed sentence, then given any assignments
hand ', M h £ Aiff M1 E A.

Step 5: The Basic Logical Notions

1. Sentence A implies sentence B, which we write ‘A £ B’, iff given any model
M and any assignment i, if M,h £ A, then M, h E B.

2. More generally, if A is a set of sentences, A k B iff given any model M and
any assignment 1, if for each A € A, M,h e A, then M,k E B.

3. Two sentences A and B are equivalent iff given any model M and any
assignment h, M,h £ A iff M,h £ B. (Thus A is equivalent to B iff both
AEBand BF A))

Step 6: Proofs

Let A, B, and C be arbitrary sentences, 7; and 7, be arbitrary terms, and x
be a variable that does not occur free in C. Let A[a/f] be the sentence that
results from simultaneously replacing all occurrences of o in A with . Then
the following sentences are axioms:

1. A->(B—-A)
2 A->B-20)=>((A=B)—>(A-0)
3. ("FA—>-B)—>(B—A)

4. Vx(A - B) » (VYA — VxB)

5. VXA — Alt1/x]

6. C—> VxC

7. T1=1T1

8. 11 =17 = (A - Alt/12])

Also, the following sentences are definitions:
1. (AAB) = =(A — —B)

. (A — —-B) = (AAB)

AV B) —» (-A > B)

-A — B) - (AVB)

2
3
4
5. (Ao B)— (A— B)A(B— A))
6

- (
- (
- (
- (A= B)A(B— A)) = (A< B)

Let modus ponens be the rule that takes as input any two sentences A and A — B
and produces as output the sentence B.

A proof is a finite sequence of sentences such that each sentence on the list is
either (i) an axiom, (ii) a definition, or (iii) the result of applying modus ponens
to two sentences earlier on the list.

We say + A if there is a proof whose final sentence is A. We say A r Bif thereis a
proof whose final sentence is A — B. We say Aj, ..., A, if there is a proof whose
final sentence is Ay — (A; — (... = (A, — B))...). If A is a set of sentences,
then we say A + B if there are Ay,..., A, € Asuch that A,,..., A, + A.

(This is only one way of setting up a proof system. We will not be very
concerned with the details of proof systems, but just with their existence and
broad outlines.)

