A Very Brief Overview of Quantified First-Order Logic

Step 1: Lexicon

Our logical languages will have the following sorts of symbols:

- 1. Constants (typically lower-case letters from the beginning of the alphabet)
- 2. Predicates (typically upper-case letters, and also =) (of any number of argument places)
- 3. Function Symbols (typically lower-case *f* or *g*) (of any number of argument places)
- 4. Variables (officially, *x*₁, *x*₂, . . .; unofficially, lower-case letters from the end of the alphabet)
- 5. Connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$
- 6. Quantifiers (\forall, \exists)
- 7. Parentheses

All languages will have the full collection of variables, connectives, quantifiers, and parentheses, and all languages will contain the identity symbol =, but languages can vary in their collection of constants, (non-identity) predicates, and function symbols (the *non-logical* vocabulary). The non-logical vocabulary of a particular language is called its *signature*. A language will sometimes be identified in the form $\mathcal{L}(\Sigma)$, where Σ is the signature. Thus $\mathcal{L}(\cdot)$ or $\mathcal{L}(\cdot, e, ^{-1})$ could be a language for group theory, $\mathcal{L}(\epsilon)$ a language for set theory, and $\mathcal{L}(+, 0, 1)$ a language for arithmetic.

Step 2: Syntax

We first recursively define *terms*:

- 1. Any variable is a term
- 2. Any constant is a term
- 3. If f^n is an *n*-ary function symbol, and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term

Next, we recursively define *sentences* (sometimes called *formulas*):

- 1. If P^n is an *n*-ary predicate and t_1, \ldots, t_n are terms, then $P^n t_1 \ldots t_n$ is a sentence
- 2. If t_1 and t_2 are terms, then $t_1 = t_2$ is a sentence
- 3. If *A* is a sentence, then $\neg A$ is a sentence
- 4. If *A* and *B* are sentences, then $(A \land B)$, $(A \lor B)$, $(A \to B)$, and $(A \leftrightarrow B)$ are all sentences.
- 5. If *A* is a sentence and *x* is a variable, then $\exists x A$ is a sentence
- 6. If *A* is a sentence and *x* is a variable, then $\forall x A$ is a sentence

An occurrence of a variable x in a sentence A is *bound* if it is in the scope of an $\exists x$ or $\forall x$ quantifier (that is, if it is part of the smallest sentence following the quantifier). It is *free* otherwise. A sentence is *closed* if all of its variable occurrences are bound, and *open* otherwise.

Step 3: Models

A *model* for a language $\mathcal{L}(\Sigma)$ is an ordered pair $(D, \llbracket \cdot \rrbracket)$, where:

- 1. *D* is an arbitrary non-empty set (the *domain of quantification*)
- 2. [[·]] is the *valuation function*, and has the following features:
 - (a) For each constant a in Σ , $\llbracket a \rrbracket$) $\in D$
 - (b) For each *n*-place predicate P^n in Σ , $\llbracket P^n \rrbracket \in D^n$
 - (c) For each *n*-place function symbol f^n in Σ , $\llbracket f^n \rrbracket \in \{g : g : D^n \mapsto D\}$

Step 4: Truth in a Model (Relative to an Assignment)

An *assignment* is a function from the set of variables to the domain of a model. We write h[a/x] to name the assignment which maps the variable x to object a, and maps all other variables in the same way that h maps them. We write $h \sim_x h'$ if h' = h[a/x] for some $a \in D$, and call h' an x-variant of h. First we define an extended valuation function $\llbracket \cdot \rrbracket_{M,h}^+$ which assigns, relative to a model \mathcal{M} and an assignment h, to each term an element of the domain:

- 1. For any constant *a*, $[\![a]\!]_{Mh}^+ = [\![a]\!]$
- 2. For any variable x, $\llbracket x \rrbracket_{\mathcal{M}h}^+ = h(x)$
- 3. For any function symbol F^n and terms t_1, \ldots, t_n , $\llbracket f^n(t_1, \ldots, t_n) \rrbracket_{\mathcal{M}, h}^+ = \llbracket f^n \rrbracket (\llbracket t_1 \rrbracket_{\mathcal{M}, h}^+, \ldots, \llbracket t_n \rrbracket_{\mathcal{M}, h}^+)$

We now define the truth of a sentence relative to a model and an assignment function. We write $\mathcal{M}, h \models A$ to mean that A is true relative to model \mathcal{M} and assignment h. We proceed recursively:

- 1. $\mathcal{M}, h \models P^n t_1 \dots t_n \text{ iff } < \llbracket t_1 \rrbracket_{\mathcal{M}h}^+, \dots, \llbracket t_n \rrbracket_{\mathcal{M}h}^+ > \in \llbracket P^n \rrbracket$
- 2. $\mathcal{M}, h \models t_1 = t_2 \text{ iff } [\![t_1]\!]_{\mathcal{M}h}^+ = [\![t_2]\!]_{\mathcal{M}h}^+$
- 3. $\mathcal{M}, h \models \neg A$ iff $\mathcal{M}, h \nvDash A$
- 4. $\mathcal{M}, h \models A \land B$ iff $\mathcal{M}, h \models A$ and $\mathcal{M}, h \models B$
- 5. $\mathcal{M}, h \models A \lor B$ iff $\mathcal{M}, h \models A$ or $\mathcal{M}, h \models B$
- 6. $\mathcal{M}, h \models A \rightarrow B$ iff $\mathcal{M}, h \nvDash A$ or $\mathcal{M}, h \models B$
- 7. $\mathcal{M}, h \models A \leftrightarrow B$ iff either (i) $\mathcal{M}, h \models A$ and $\mathcal{M}, h \models B$ or (ii) $\mathcal{M}, h \nvDash A$ and $\mathcal{M}, h \nvDash B$
- 8. $\mathcal{M}, h \models \exists x A$ iff there is some $h' \sim_x h$ such that $\mathcal{M}, h' \models A$
- 9. $\mathcal{M}, h \models \forall x A$ iff every h' such that $h' \sim_x h$ is such that $\mathcal{M}, h' \models A$

It can then be shown that if *A* is a closed sentence, then given any assignments *h* and *h'*, $\mathcal{M}, h \models A$ iff $\mathcal{M}, h' \models A$.

Step 5: The Basic Logical Notions

- 1. Sentence *A implies* sentence *B*, which we write ' $A \models B$ ', iff given any model \mathcal{M} and any assignment *h*, if $\mathcal{M}, h \models A$, then $\mathcal{M}, h \models B$.
- 2. More generally, if Δ is a set of sentences, $\Delta \models B$ iff given any model \mathcal{M} and any assignment *h*, if for each $A \in \Delta$, $\mathcal{M}, h \models A$, then $\mathcal{M}, h \models B$.
- 3. Two sentences *A* and *B* are *equivalent* iff given any model *M* and any assignment *h*, $M, h \models A$ iff $M, h \models B$. (Thus *A* is equivalent to *B* iff both $A \models B$ and $B \models A$.)

Step 6: Proofs

Let *A*, *B*, and *C* be arbitrary sentences, τ_1 and τ_2 be arbitrary terms, and χ be a variable that does not occur free in *C*. Let $A[\alpha/\beta]$ be the sentence that results from simultaneously replacing all occurrences of α in *A* with β . Then the following sentences are *axioms*:

- 1. $A \rightarrow (B \rightarrow A)$
- 2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- 3. $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

4. $\forall \chi (A \rightarrow B) \rightarrow (\forall \chi A \rightarrow \forall \chi B)$ 5. $\forall \chi A \rightarrow A[\tau_1/\chi]$ 6. $C \rightarrow \forall \chi C$ 7. $\tau_1 = \tau_1$ 8. $\tau_1 = \tau_2 \rightarrow (A \rightarrow A[\tau_1/\tau_2])$

Also, the following sentences are *definitions*:

1. $(A \land B) \rightarrow \neg (A \rightarrow \neg B)$ 2. $\neg (A \rightarrow \neg B) \rightarrow (A \land B)$ 3. $(A \lor B) \rightarrow (\neg A \rightarrow B)$ 4. $(\neg A \rightarrow B) \rightarrow (A \lor B)$ 5. $(A \leftrightarrow B) \rightarrow ((A \rightarrow B) \land (B \rightarrow A))$ 6. $((A \rightarrow B) \land (B \rightarrow A)) \rightarrow (A \leftrightarrow B)$

Let *modus ponens* be the rule that takes as input any two sentences A and $A \rightarrow B$ and produces as output the sentence B.

A *proof* is a finite sequence of sentences such that each sentence on the list is either (i) an axiom, (ii) a definition, or (iii) the result of applying modus ponens to two sentences earlier on the list.

We say $\vdash A$ if there is a proof whose final sentence is A. We say $A \vdash B$ if there is a proof whose final sentence is $A \rightarrow B$. We say A_1, \ldots, A_n if there is a proof whose final sentence is $A_1 \rightarrow (A_2 \rightarrow (\ldots \rightarrow (A_n \rightarrow B)) \ldots)$. If Δ is a set of sentences, then we say $\Delta \vdash B$ if there are $A_1, \ldots, A_n \in \Delta$ such that $A_1, \ldots, A_n \vdash A$.

(This is only one way of setting up a proof system. We will not be very concerned with the details of proof systems, but just with their existence and broad outlines.)