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1 Introduction

The central aim of inquisitive semantics is to develop a notion of semantic
meaning that captures both informative and inquisitive content. This en-
riched notion of meaning is intended to provide a new foundation for the
analysis of linguistic discourse, in particular the type of discourse that is
aimed at exchanging information.

The classical truth-conditional notion of meaning embodies the informa-
tive content of sentences, and thereby reflects the descriptive use of language.
Stalnaker (1978) gave this notion a dynamic and conversational twist by
taking the meaning of a sentence to be its potential to change the common
ground, i.e., the body of shared information established in a conversation.
The notion of meaning that resulted from this ‘dynamic turn’ reflects the
active use of language in changing information. However, it does not yet re-
flect the interactive use of language in exchanging information. This requires
yet another turn, an ‘inquisitive turn’, leading to a notion of meaning that
directly reflects the nature of information exchange as a cooperative process
of raising and resolving issues.

These lecture notes bring together and further expand on a number of
results obtained in our recent work on inquisitive semantics Groenendijk and
Roelofsen (2009); Ciardelli (2009); Ciardelli and Roelofsen (2011); Roelofsen
(2011); Ciardelli et al. (2012).1 In particular, they provide a detailed ex-
position of what we currently see as the most basic implementation of the
framework, which we refer to as Inqb.

The notes are organized as follows. Section 2 introduces the new notion
of meaning that forms the heart of inquisitive semantics. Section 3 identifies
the algebraic structure of this new space of meanings, and section 4 presents
a system that associates meanings with sentences in a first-order language.
The basic logical properties of this system are characterized in section 5, and
finally, its relevance for natural language semantics is discussed in section 6.

2 Inquisitive meanings

A general scheme in which many notions of meaning can be naturally framed
is the following. When a sentence is uttered in a certain discourse context, it

1
For more recent and ongoing work on inquisitive semantics we refer to

www.illc.uva.nl/inquisitive-semantics.
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expresses a proposition, which embodies a proposal to change the context in
certain ways. This proposition is determined by the meaning of the sentence.
The meaning of a sentence, therefore, can be thought of as something which
embodies the potential of a sentence to express a proposition when uttered in
a discourse context: formally, it is a function from contexts to propositions.

This general scheme gives rise to different notions of meaning depending
on how the two parameters occurring in it, namely the notions of discourse
context and proposition, are instantiated. In this section we will work our
way to the inquisitive notion of meaning by motivating and illustrating the
notion of context and proposition which are adopted in inquisitive semantics,
as well as the particular restrictions imposed on meaning functions.

2.1 Information states and issues

In this section we introduce the two basic formal notions that play a role in
the inquisitive picture of meaning: information states and issues.

Information states. We adopt the standard notion of an information state
as a set of possible worlds. Throughout the discussion we assume a fixed set
ω of possible worlds, whose nature will depend on the choice of a formal
language.

Definition 1 (Information states).
An information state is a set s ⊆ ω of possible worlds.

We will often refer to an information state simply as a state. A state s is
thought of as representing the information that the actual world lies in s. If
t ⊆ s, then t locates the actual world at least as precisely as s: we may thus
call t an enhancement of s.

Definition 2 (Enhancements).
A state t is called an enhancement of s just in case t ⊆ s.

Notice that this definition includes the trivial enhancement t = s. If an
enhancement t is non-trivial, that is, if t is strictly more informed than s,
then we call t a proper enhancement of s.

The two extreme cases of the enhancement order are the empty state
∅, which is an enhancement of any state, and the set ω of all worlds, of
which any state is an enhancement. The former models a state in which any
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Figure 1: Information states.

possible world has been discarded as a candidate for the actual world, that
is, the available information is inconsistent: we call ∅ the inconsistent state.
The latter, on the contrary, models a state in which any possible world is
taken to be a plausible candidate for the actual world, that is, we have no
clue at all what the actual world is like: we call ω the ignorant state.

Figure 1 shows some examples of information states when our set of pos-
sible worlds consists of four worlds: w1 , w2 , w3 , w4 . Notice that these states
are arranged according to the enhancement ordering from left to right, the
last figure depicting the ignorant state ω.

Issues. An issue is meant to represent the semantic content of a request
for information. Now, what does it mean to request information? If the
information available in a certain context is represented by a state s, a request
for information in s is a request to locate the actual world more precisely
inside s. Thus, the content of the request consists in a specification of which
enhancements of s locate the actual world with sufficient precision. Hence,
an issue in s will be modeled as a non-empty set I of enhancements of s.

Importantly, we do not regard just any non-empty set I of enhancements
of s as an issue. First, if I contains a certain enhancement t of s, and t� ⊆ t
is a further enhancement of t, then t� must also be in I. After all, if t locates
the actual world with sufficient precision, then t� cannot fail to do so as well.
So, I must be downward closed.

Second, the elements of I must together form a cover of s. That is, every
world in s must be included in at least one element of I. To see why this is a
natural requirement, suppose that w is a world in s that is not included in any
element of I. Then the information available in s does not preclude w from
being the actual world. But if w is indeed the actual world, then it would
be impossible to satisfy the request represented by I without discarding the
actual world. Thus, in order to ensure that it is possible to satisfy the request
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Figure 2: Issues over the state {w1, w2, w3, w4}.

represented by I without discarding the actual world, I should form a cover
of s. This leads us to the following notion of an issue.

Definition 3 (Issues).
Let s be an information state, and I a non-empty set of enhancements of s.
Then we say that I is an issue over s if and only if:

1. I is downward closed : if t ∈ I and t� ⊆ t then also t� ∈ I

2. I forms a cover of s:
�

I = s

Definition 4 (Settling an issue).
Let s be an information state, t an enhancement of s, and I an issue over s.
Then we say that t settles I if and only if t ∈ I.

Notice that an issue I over a state s may contain s itself. This means that
I does not request any information beyond the information that is already
available in s. We call I a trivial issue over s in this case. Downward closure
implies that for any state s there is precisely one trivial issue over s, namely
℘(s). On the other hand, if s �∈ I, then in order to settle I further information
is required, that is, a proper enhancement of s must be established. In this
case we call I a proper issue.

Two issues over a state s can be compared in terms of the information
that they request: one issue I is at least as inquisitive as another issue J in
case any state that settles I also settles J . Since an issue is identified with
the set of states that settle it, we obtain the following definition.

Definition 5 (Ordering issues).
Given two issues I, J on a state s, we say that I is at least as inquisitive as
J just in case I ⊆ J .
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Among the issues over a state s there is always a least and a most inquisitive
one. The least inquisitive issue over s is the trivial issue ℘(s) which, as we
saw, requests no information. The most inquisitive issue over s is {{w} |w ∈
s} ∪ {∅}, which can only be settled consistently by providing a complete
description of what the actual world is like.

Figure 2 shows some issues over the information state s = {w1 , w2 , w3 , w4}.
In order to keep the figures neat, only the maximal elements of these issues
are displayed. The issue depicted in (a) is the most inquisitive issue over s,
which is only settled by specifying precisely which world is the actual one.
The issue depicted in (b) is settled either by locating the actual world within
the set {w1 , w2}, or by locating it within {w3 , w4}. The issue depicted in (c)
is settled either by locating the actual world in {w1 , w3 , w4}, or by locating
it within {w2 , w3 , w4}. Finally, (d) represents the trivial issue over s, which
is already settled in s. Both (b) and (c) are less inquisitive than (a) and more
inquisitive than (d), while they are incomparable with each other.

2.2 Discourse contexts and propositions

The notions of information states and issues introduced in the previous sec-
tion constitute the basic ingredients of the inquisitive picture of meaning. In
this section they will be put to use to define the notions of discourse contexts

and propositions.

Discourse contexts. For our present purposes, a discourse context can be
identified with the common ground of the discourse, that is, the body of in-
formation that is common knowledge among the conversational participants.
A discourse context will thus be modeled simply as an information state.

Propositions. The proposition expressed by a sentence in a certain dis-
course context should embody the effect of an utterance of that sentence in
that discourse context. We recognize two types of effects that an utterance
may have. First, as is assumed in traditional accounts of meaning, a sentence
can be used to provide information, that is, to enhance the information state
of the common ground. Thus, a proposition may specify an enhancement t
of the current context s.

However, unlike those traditional accounts, we take sentences to have the
potential to domore than just providing information. Namely, sentences may
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also be used to request information. Therefore, besides specifying a certain
enhancement t of the current context s, a proposition may also specify a
certain issue I.

Now, we might take the stance that there are two distinct types of proposi-
tions: informative propositions, which specify an enhancement of the current
context, and inquisitive propositions, which specify an issue over the current
context. However, we will take a more general and unifying standpoint,
which assumes only one, richer type of proposition. Namely, we will define
a proposition A over a context s as having both an informative component,
consisting in an enhancement t of s, and an inquisitive component, consisting
in an issue I over t.

Definition 6 (Propositions, to be simplified presently).
A proposition over a state s is a pair A = (t, I), where:

• t is an enhancement of s called the informative content of A;

• I is an issue over t called the inquisitive content of A.2

Consider a proposition A = (t, I). Since I is an issue over t, the union of
all the states in I must coincide with t. This means that the informative
component t of the proposition can be retrieved from I, and it need not
appear explicitly in the representation of the proposition. Thus, our notion
of propositions can be simplified as follows.

Definition 7 (Propositions, simplified).

• A proposition A over a state s is an issue over a substate t ⊆ s.

• We denote by Πs the set of all propositions over a state s.

Notice that if A is a proposition over s, it is also a proposition over any state
t ⊇ s. In particular, any proposition is a proposition over the ignorant state
ω: therefore, we simply write Π for Πω, and we call Π the set of propositions.

The informative content of a proposition A is embodied by
�
A. We will

denote this set of worlds as info(A).

Definition 8 (Informative content). For any A ∈ Π: info(A) :=
�

A

2
This is incompatible with what happens later in the semantics section.

8



w1 w2

w3 w4

(a) −informative

−inquisitive

w1 w2

w3 w4

(b) +informative

−inquisitive

w1 w2

w3 w4

(c) −informative

+inquisitive

w1 w2

w3 w4

(d) +informative

+inquisitive

Figure 3: Propositions over the state {w1 , w2 , w3 , w4}.

In expressing a proposition A, one provides the information that the actual
world lies in info(A) and requests enough information from other participants
to locate the actual world inside one of the states in A.

The fact that we take any proposition to have both an informative and
an inquisitive component should not be taken to mean that we take any
proposition to be both informative and inquisitive: for either, or even both,
of these components may be trivial. We say that a proposition is informative

only in case its informative content is non-trivial, and inquisitive only in case
its inquisitive content is non-trivial.

Definition 9 (Informativeness, inquisitiveness).
Let A be a proposition over a state s.

• We say that A is informative in s just in case info(A) ⊂ s;

• We say that A is inquisitive in s just in case info(A) �∈ A.

So, we still have purely informative propositions, which do not request any
information, and purely inquisitive propositions, which do not provide any
information. However, both are regarded as particular cases of a unique
notion of proposition. Moreover, we are not committed to the assumption
that every proposition is either purely informative or purely inquisitive: our
approach leaves room for hybrid propositions, which are both informative
and inquisitive at the same time.

In figure 3, several examples of propositions over s = {w1 , w2 , w3 , w4}
are depicted, always with the convention that only the maximal elements
are displayed. The proposition represented in figure (a) is not informative
in s, because its informative content coincides with s, and it is also not
inquisitive in s, because its inquisitive content forms a trivial issue over s.

9

The proposition represented in figure (b) is informative in s, because its
informative content is a proper enhancement of s, but not inquisitive in s,
since its inquisitive content is trivial. The proposition represented in figure
(c) is not informative in s, because its informative content coincides with s,
but it is inquisitive, because its inquisitive content is non-trivial. Finally,
the proposition represented in figure (d) is both informative and inquisitive,
since its informative content is a proper enhancement of s and its inquisitive
content is non-trivial.

Propositions can be compared in terms of the information that they pro-
vide and the information that they request. We say that a proposition A is
at least as informative as a proposition B if the informative content of A is
an enhancement of the informative content of B.

Definition 10 (Informativeness ordering). Let A,B ∈ Π.
We say that A is at least as informative as B just in case info(A) ⊆ info(B).

If A and B are equally informative propositions, then we say that A is at
least as inquisitive as B in case the inquisitive content of A is at least as
demanding as the inquisitive content of B.

Definition 11 (Inquisitiveness ordering). Let A,B ∈ Π, info(A) = info(B).
Then we say that A is at least as inquisitive as B just in case A ⊆ B.

Now we would like to say that a proposition A entails a proposition B just
in case A is both at least as informative and at least as inquisitive as B. But
there is a subtlety here. Namely, if A is strictly more informative than B,
then A and B cannot be compared directly in terms of inquisitiveness. Thus,
what we request is that A be at least as informative as B and moreover, that
A be at least as inquisitive as the restriction of B to info(A).

Definition 12 (Restriction).
If A ∈ Πs and t ⊆ s, the restriction of A to t is the proposition A�t ∈ Πt

defined by:
A�t = {t� ⊆ t | t� ∈ A}

Intuitively, A�t is a proposition over t that inherits the content of A. The
informative content of A � t amounts to info(A) ∩ t. Thus, A � t provides
the information that the actual world lies in info(A), which is precisely the
information provided by A itself. Moreover, the request expressed by A�t is
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to enhance info(A�t) in such a way as to satisfy the issue A. Notice that if A
itself is already a proposition over t, then A�t simply amounts to A.

The notion of restriction allows us to define entailment between propo-
sitions. A proposition A entails a proposition B in case (i) A is at least as
informative as B: info(A) ⊆ info(B); and (ii) A is at least as inquisitive as
the restriction of B to info(A): A ⊆ B�info(A). However, it is easy to see that
these two conditions are satisfied if and only if A ⊆ B. Therefore, entailment
between propositions can simply be defined as inclusion.

Definition 13 (Entailment between propositions).
Let A,B ∈ Π. Then we say that A entails B just in case A ⊆ B.

2.3 Meanings

Equipped with formal notions of discourse contexts and propositions, let us
now come back to our initial picture of meaning. In every discourse context,
a sentence expresses a certain proposition. This proposition is determined by
the meaning of the sentence. The meaning of a sentence, therefore, consists
in the potential that the sentence has to express propositions in context. It
can be modeled as a function f that maps each context s to a proposition
f(s) ∈ Πs . We call f(s) the proposition expressed by f in s.

In principle, such a function f might express totally unrelated proposi-
tions in two states s and t. However, we expect our meanings to act in a
uniform way across different contexts. The idea is that if the propositions
f(s) and f(t) differ, the difference should be traceable to the initial difference
in information between s and t. Once the information gap between s and t
is filled, the difference between the two propositions should also vanish. This
intuition is formalized by the compatibility condition specified below, which
requires that when t is an enhancement of s, the proposition f(t) expressed
in t should coincide with the restriction of the proposition f(s) to t.

Definition 14 (Compatibility condition).
A function f which associates to any discourse context s a proposition f(s) ∈
Πs is called compatible just in case whenever t ⊆ s, f(t) = f(s)�t.

We can obtain an intuition by looking at figure 4. Here s = {w1 , w2 , w3 , w4}
and t = {w1 , w2 , w3}. Suppose the proposition f(s) expressed by a function
f on s is the one depicted in figure (a). Then in order for f to be compati-
ble, the proposition f(t) expressed by f on t should be the one depicted in
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Figure 4: Illustrating the compatibility condition.

figure (b), which is obtained by restricting the proposition in (a) to t, and
not, say, the one depicted in figure (c).

Definition 15 (Meanings).

• Ameaning is a compatible function that maps every discourse context s
to a proposition over s.

• The set of all meanings is denoted by M.

We say that a meaning is informative in case it has the potential to provide
information, that is, if in some discourse contexts it expresses an informative
proposition. Similarly, we say that a meaning is inquisitive if it has the
potential to request information, that is, if in some contexts it expresses an
inquisitive proposition.

Definition 16 (Informativeness, inquisitiveness). Let f be a meaning.

• We say that f is informative just in case there is a context s such that
the proposition f(s) expressed by f in s is informative in s.

• We say that f is inquisitive just in case there is a context s such that
the proposition f(s) expressed by f in s is inquisitive in s.

Meanings can be ordered in terms of the strength of the propositions they
express: we will say that a meaning f entails a meaning g in case on any
state s, the proposition f(s) entails the proposition g(s).

12



Definition 17 (Entailment between meanings).
If f and g are meanings, we say that f entails g, in symbols f ≤ g, just in
case f(s) ⊆ g(s) for any context s.

Now, recall that any state s is a substate of the ignorant state ω consisting
of all worlds. Thus, if f is a meaning, the compatibility condition yields that
for all states s:

f(s) = f(ω)�s
This shows that every meaning f is fully determined by a unique proposition,
namely the proposition f(ω) that it expresses in the ignorant state. And vice
versa, any proposition A uniquely determines a meaning fA, which associates
to each context s the proposition:

fA(s) = A�s
We have thus reached the following conclusion.

Fact 1.
There is a one-to-one correspondence between meanings and propositions.

The meaning of a sentence can thus be given by equipping it with a unique,
absolute proposition A. The proposition expressed in a particular context s
will then be obtained by restricting A to s. But there is more: the following
facts ensure that all the properties of meanings we have seen so far, as well as
the entailment ordering between them, can be recast in terms of properties
of the corresponding propositions and of the entailment ordering between
them.

Fact 2. Let f be a meaning.

• f is informative iff the proposition f(ω) is informative in ω.

• f is inquisitive iff the proposition f(ω) is inquisitive in ω.

Fact 3. For any two meanings f and g:

f ≤ g ⇐⇒ f(ω) ⊆ g(ω)

Combining facts 1 and 3 we obtain the following result.

Fact 4. The space �M,≤� of meanings ordered by entailment and the space
�Π,⊆� of propositions ordered by entailment are isomorphic.

In the next section, we turn to an investigation of the algebraic structure of
the space of proposition. The above result guarantees that the results of this
investigation will directly pertain to the structure of meanings as well.
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3 Inquisitive algebra

In this section we will investigate the algebraic structure of the space �Π,⊆�
of propositions ordered by entailment. This is of course interesting in its
own right, but it will also play a crucial role in defining a concrete inquisi-
tive semantics for the language of first-order logic, which we will turn to in
the next section. The algebraic results to be presented here will suggest a
particular way to deal with connectives and quantifiers. For instance, con-
junction will be taken to behave semantically as a meet operator, yielding the
greatest lower bound of the propositions expressed by its constituents, and
other connectives and quantifiers will be associated with other basic algebraic
operations, just as in classical logic.

To illustrate our approach, we will first briefly review the algebraic per-
spective on classical logic. After that, we will turn our attention to the
algebra of propositions in inquisitive semantics.3

3.1 The algebraic perspective on classical logic

In the classical setting a proposition A is simply a set of possible worlds,
which embodies the information that the actual world is located in A. Given
this way of thinking about propositions, there is a natural entailment order

between them: one proposition A entails another proposition B iff A is at
least as informative as B, i.e., iff in uttering A, a speaker locates the actual
world more precisely than in uttering B. This condition is fulfilled just in
case A ⊆ B. Thus, the space of classical propositions ordered by entailment
is the partially ordered set �℘(ω),⊆�.

This space is equipped with a rich algebraic structure. To start with, for
any set of propositions Σ, there is a unique proposition that (i) entails all the
propositions in Σ, and (ii) is entailed by all other propositions that entail all
propositions in Σ. This proposition is the greatest lower bound of Σ w.r.t. the
entailment order, or in algebraic jargon, its meet. It amounts to

�
Σ (given

the stipulation that
�
∅ = W ). Similarly, every set of propositions Σ also

has a unique least upper bound w.r.t. the entailment order, which is called
its join, and amounts to

�
Σ. The existence of meets and joins for arbitrary

sets of classical propositions implies that the space of classical propositions
ordered by entailment forms a complete lattice.

3
This section is based on Roelofsen (2011). We present the main results here but omit

the proofs.
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This lattice is bounded. That is, it has a bottom element, ⊥ := ∅, and a
top element, � := ω. Moreover, for every two propositions A and B, there is
a unique weakest proposition C such that A∩C entails B. This proposition
is called the pseudo-complement of A relative to B. It is denoted as A ⇒ B
and in the case of �℘(ω),⊆�, it amounts to A ∪ B, where A denotes the
set-theoretic complement of A, ω − A. Intuitively, the pseudo-complement
of A relative to B is the weakest proposition such that if we ‘add’ it to A,
we get a proposition that is at least as strong as B. The existence of relative
pseudo-complements implies that �℘(ω),⊆� forms a Heyting algebra.

If A is an element of a Heyting algebra, it is customary to refer to the
pseudo-complement of A relative to the bottom element of the algebra, A∗ :=
(A ⇒ ⊥), as the pseudo-complement of A. In the case of �℘(ω),⊆�, A∗ simply
amounts to the set-theoretic complement A of A. By definition of pseudo-
complements, we have that A ∩ A∗ = ⊥ for any element A of any Heyting
algebra. In the specific case of �℘(ω),⊆�, we also always have that A∪A∗ =
�. This means that in �℘(ω),⊆�, A∗ is in fact the Boolean complement of
A, and that �℘(ω),⊆� forms a Boolean algebra, a special kind of Heyting
algebra.

Thus, the space of classical propositions is equipped with certain natural
operations. Classical first-order logic is obtained by associating these opera-
tions with the logical constants. Indeed, the usual definition of truth can be
reformulated as a recursive definition of the set |ϕ|g of models over a domain
D in which ϕ is true relative to an assignment g. The inductive clauses then
run as follows:

• |¬ϕ|g = |ϕ|∗g

• |ϕ ∧ ψ|g = |ϕ|g ∩ |ψ|g

• |ϕ ∨ ψ|g = |ϕ|g ∪ |ψ|g

• |ϕ → ψ|g = |ϕ|g ⇒ |ψ|g

• |∀x.ϕ|g =
�

d∈D |ϕ|g[x �→d ]

• |∃x.ϕ|g =
�

d∈D |ϕ|g[x �→d ]

Negation expresses complementation, conjunction and disjunction express
binary meet and join, respectively, implication expresses relative pseudo-
complementation, and quantified formulas, ∀x.ϕ and ∃x.ϕ, express the in-
finitary meet and join, respectively, of {|ϕ|g[x �→d ] | d ∈ D}.
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Notice that everything starts with a certain notion of propositions and a
natural entailment order on these propositions. This entailment order, then,
gives rise to certain basic operations on propositions, and classical first-order
logic is obtained by associating these basic semantic operations with the
logical constants.

3.2 Algebraic operations on propositions in InqB

In exactly the same way, we may investigate the algebraic structure of the
space of inquisitive propositions in order to determine which operations could
be associated with the logical constants in inquisitive semantics. What kind
of algebraic operations exist in the space �Π,⊆�?

First, as in the classical setting, any set of meanings F ⊆ Π has a unique
greatest lower bound (meet) and a unique least upper bound (join).

Fact 5 (Meet). For any set F ⊆ Π,
�
F is in Π and it is the meet of F .4

Fact 6 (Join). For any set F ⊆ Π,
�
F is in Π and it is the join of F .

The existence of meets and joins for arbitrary sets of propositions implies
that �Π,⊆� forms a complete lattice. And again, this lattice is bounded, i.e.,
there is a bottom element, ⊥ := {∅}, and a top element, � := ℘(ω). Finally,
as in the classical setting, for every two propositions A and B, there is a
unique weakest proposition C such that A ∩ C entails B. Recall that this
proposition, which is called the pseudo-complement of A relative to B, can
be characterized intuitively as the weakest proposition such that if we add it
to A, we get a proposition that is at least as strong as B.

Definition 18. For any two propositions A and B:

A ⇒ B := {α | for every β ⊆ α, if β ∈ A then β ∈ B}

Fact 7 (Relative pseudo-complement).
For any A,B ∈ Π, A ⇒ B is the pseudo-complement of A relative to B.

The existence of relative pseudo-complements implies that �Π,⊆� forms a
Heyting algebra. This simple fact will be very useful in the investigation of
the logic of our system (see section 5), since it immediately yields the fact

4
Given the convention that

�
∅ = ℘(ω).
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that inquisitive logic is an extension of intuitionistic logic. Recall that in a
Heyting algebra, A∗ := (A ⇒ ⊥) is referred to as the pseudo-complement of
A. In the specific case of �Π,⊆�, pseudo-complements can be characterized
as follows.

Fact 8 (Pseudo-complement). For any proposition A ∈ Π:

A∗ = {β | β ∩ α = ∅ for all α ∈ A} = ℘(
�

A)

Thus, A∗ consists of all states that are disjoint from any element of A. This
means that a piece of information settles A∗ just in case it locates the actual
world outside

�
A.

So far, then, everything works out just as in the classical setting. However,
unlike in the classical setting, the pseudo-complement of a proposition is not
always its Boolean complement. In fact, most propositions in �Π,⊆� do not
have a Boolean complement at all. To see this, suppose that A and B are
Boolean complements. This means that (i) A ∩ B = ⊥ and (ii) A ∪ B = �.
Since � = ℘(ω), condition (ii) can only be fulfilled if ω is contained in either
A or B. Suppose ω ∈ A. Then, since A is downward closed, A = ℘(ω) = �.
But then, in order to satisfy condition (i), we must have that B = {∅} = ⊥.
So the only two elements of our algebra that have a Boolean complement are
� and ⊥. Hence, the space �Π,⊆� of inquisitive propositions does not form
a Boolean algebra.

Thus, starting with a new notion of propositions and a suitable entail-
ment order on these propositions that takes both informative and inquisitive
content into account, we have established an algebraic structure with two ex-
tremal elements and three basic operations, meet, join, and relative pseudo-

complementation. The only algebraic difference with respect to the classical
setting is that, except for the extremal elements, inquisitive propositions do
not have Boolean complements. However, as in the classical setting, every
proposition does have a pseudo-complement. This algebraic result gives rise
to an inquisitive semantics for a first-order language, to which we turn now.

4 Inquisitive semantics

In this section we define an inquisitive semantics for a first-order language,
motivated by the algebraic results presented in the previous section. We will
investigate the main properties of the system, and illustrate it with a range
of examples.
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4.1 Inquisitive semantics for a first-order language

We will consider a standard first-order language L, with ⊥, ∨, ∧, →, ∃, and
∀ as its basic logical constants. We will use ¬ϕ as an abbreviation of ϕ → ⊥.
We will also use !ϕ as an abbreviation of ¬¬ϕ and ?ϕ as an abbreviation of
ϕ∨¬ϕ. We refer to ! as the declarative operator and to ? as the interrogative
operator. The precise role of these operators in the system will become clear
below, especially in section 4.6.

In order to simplify matters, we consider a fixed domain D and a fixed
interpretation of constants and function symbols: that is, we restrict our
attention to the case in which the domain of discourse and the reference of
proper names are common knowledge among the discourse participants, and
the only uncertainty concerns the extension of predicates and relations.

Formally, we consider a fixed domain structure D = (D, ID) which consists
of a domain D and an interpretation function ID that maps every individual
constant c to an object in D and every n−ary function symbol f to a function
from Dn to D. Our logical space consists of first-order models based on D.

Definition 19 (D-worlds). A D−world is a structure w = (D, Iw), where
Iw is a function interpreting each n−ary relation symbol R as a relation
Iw(R) ⊆ Dn . The set of all D−worlds is denoted ωD.

Unless specified otherwise, the structure D will be considered fixed through-
out our discussion and we shall drop reference to it whenever possible. In
order not to have assignments in the way all the time, we will assume that
for any d ∈ D, the language L contains an individual constant d such that
ID(d) = d: if this is not the case, we simply expand the language by adding
new constants, and we expand ID accordingly. In this way we can define our
semantics for sentences only, and we can do without assignments altogether.
This move is not essential, but it simplifies both notation and terminology.

If ϕ is a sentence of L, we denote by |ϕ| the set of all worlds where ϕ is
classically true; we call |ϕ| the truth-set of ϕ.

Definition 20 (Truth-set). The truth set |ϕ| of a formula ϕ is the set of
worlds where ϕ is classically true.

We are now ready to recursively associate a proposition to each sentence
of our first-order language. We start with atomic sentences: the proposition
expressed by an atomic sentence R(t1 , . . . , tn) is defined as the set of all states
that consist exclusively of worlds where R(t1 , . . . , tn) is true. This means
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that in uttering an atomic sentence, a speaker provides the information that
the actual world is one where that sentence is true, and does not request
any further information. Thus, atomic sentences are treated just as in the
classical setting. The inductive clauses of the semantics are driven by the
algebraic results established in the previous section. That is, the logical
constants are taken to express the fundamental operations that we identified
on our space of propositions.

Definition 21 (Inquisitive semantics for a first-order language).

1. [R(t1 , . . . , tn)] := ℘(|R(t1 , . . . , tn)|)

2. [⊥] := {∅}

3. [ϕ ∧ ψ] := [ϕ] ∩ [ψ]

4. [ϕ ∨ ψ] := [ϕ] ∪ [ψ]

5. [ϕ → ψ] := [ϕ] ⇒ [ψ]

6. [∀x.ϕ(x)] :=
�

d∈D [ϕ(d)]

7. [∃x.ϕ(x)] :=
�

d∈D [ϕ(d)]

We refer to this first-order system as Inqb, where B stands for basic. We
refer to [ϕ] as the proposition expressed by ϕ, and to the elements of [ϕ] as
the possibilities for ϕ. The clauses of Inqb constitute a proper inquisitive
semantics in the sense that they indeed associate every sentence ϕ ∈ L with
a proposition in the sense of section 2.2.

Fact 9 (Suitability of the semantics).
For every ϕ ∈ L, [ϕ] ∈ Π.

Since negation is defined as an abbreviation, its semantic behavior is deter-
mined by that of the basic connectives. The derived clause for negation is
given below. Notice that [¬ϕ] = [ϕ]∗, which means that negation expresses
the pseudo-complementation operation.

Fact 10 (Derived clause for negation).

• [¬ϕ] = [ϕ → ⊥] = [ϕ] ⇒ {∅} = [ϕ]∗ = ℘(
�
[ϕ])
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The informative content of a sentence ϕ, info(ϕ), is defined as the informative
content of the proposition it expresses, which amounts to

�
[ϕ].

Definition 22 (Informative content). For every ϕ ∈ L: info(ϕ) :=
�
[ϕ]

A sentence ϕ entails another sentence ψ just in case the proposition expressed
by ϕ entails the proposition expressed by ψ, and ϕ and ψ are equivalent,
ϕ ≡ ψ, just in case they express exactly the same proposition.

Definition 23 (Entailment and equivalence). Let ϕ,ψ ∈ L. Then:

• ϕ entails ψ just in case [ϕ] ⊆ [ψ]

• ϕ and ψ are equivalent, ϕ ≡ ψ, just in case [ϕ] = [ψ]

4.2 Semantic categories

We call a sentence informative just in case it has an informative meaning,
i.e., if it has the potential to express an informative proposition in some state,
and inquisitive just in case it has an inquisitive meaning, i.e. if it has the
potential to express an inquisitive proposition in some state. Fact 4 ensures
that these properties can be recast in terms of properties of the proposition
[ϕ] as follows.

Definition 24 (Informativeness, inquisitiveness).

• A sentence ϕ is informative if info(ϕ) �= ω.

• A sentence ϕ is inquisitive if info(ϕ) �∈ [ϕ].

These semantic properties allow us to distinguish several classes of sentences.
First, we have sentences that are non-inquisitive, lacking the potential to re-
quest information. The meaning of such sentences consists exclusively in
their informative potential, which means that, if their utterance in a con-
text has any effect at all, then what it does is to provide information. We
call such sentences assertions. Symmetrically, there are sentences that are
non-informative, lacking the potential to provide information. Their mean-
ing consists exclusively in their inquisitive potential, which means that, if
their utterance in a context has any effect at all, then what it does is to
request information. Such sentences are called questions. Thirdly, there are
sentences that lack both informative and inquisitive potential. When uttered
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Figure 5: Semantic categories.

in a context, these sentences never have any effect at all. They are thus in-
significant, and we call them tautologies. Finally, there are sentences which
are both informative and inquisitive. Such sentences, which are capable both
of providing and of requesting information, are called hybrids.

Definition 25 (Semantics categories). We say that a sentence ϕ is:

• an assertion iff it is non-inquisitive;

• a question iff it is non-informative;

• a tautology iff it is neither informative nor inquisitive;

• a hybrid iff it is both informative and inquisitive.

These four semantic categories are exemplified in figure 5. Spelling out what
it means to be non-informative and non-inquisitive we obtain the following
direct characterization of questions, assertions and tautologies.

Fact 11 (Direct characterization of questions, assertions and tautologies).

• ϕ is an assertion ⇐⇒ info(ϕ) ∈ [ϕ].

• ϕ is a question ⇐⇒ info(ϕ) = ω.

• ϕ is a tautology ⇐⇒ ω ∈ [ϕ].

Notice that if info(ϕ) ∈ [ϕ] then, since info(ϕ) =
�
[ϕ], info(ϕ) must be

the greatest element of [ϕ]. Vice versa, if [ϕ] has a greatest element, it is
easy to see that this greatest element must be precisely info(ϕ). We have
thus established the following fact, which makes it particularly easy to say
whether a sentence is an assertion, given a visualization of the proposition
that it expresses.
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Figure 6: Questions, assertions, tautologies, and hybrids in a two-dimensional
space.

Fact 12 (Alternative characterization of assertions).

ϕ is an assertion ⇐⇒ [ϕ] = ℘(info(ϕ))

⇐⇒ [ϕ] has a greatest element.

We can visualize sentences as inhabiting a two-dimensional space, as depicted
in figure 6, arranged according to the strength of their informative and in-
quisitive content. The informative axis, where the inquisitive component is
trivial, is inhabited by assertions, which are non-inquisitive. The inquisitive
axis, where the informative component is trivial, is inhabited by questions,
which are non-informative. The ‘zero-point’ of the space, where both com-
ponents are trivial, is inhabited by tautologies, which are neither informative
nor inquisitive. The rest of the space, where both components are non-trivial,
is inhabited by hybrids, which are both informative and inquisitive.

4.3 Information and truth

Let us now look more closely at how informative content is treated in Inqb.
Recall that info(ϕ) is defined as

�
[ϕ]. Thus, info(ϕ) is a state. In uttering

the sentence ϕ, a speaker provides the information that the actual world lies
in this state. In classical logic, the informative content of a sentence ϕ is
also embodied by a state, namely the truth-set |ϕ|, consisting of all worlds
where ϕ is true. Now, the question that naturally arises is how these notions
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of informative content relate to each other. The following fact answers this
question, establishing that the two notions always coincide.

Fact 13 (The treatment of information in Inqb is classical).
For any sentence ϕ, info(ϕ) = |ϕ|.

This shows that Inqb preserves the classical treatment of informative content.
Inqb only differs from classical logic in that it captures an additional aspect
of meaning, namely inquisitive content.

Notice that in combination with facts 11 and 12, fact 13 entails the fol-
lowing characterization of assertions and questions in terms of classical truth.

Fact 14 (Questions, assertions, and classical truth).

• ϕ is a question ⇐⇒ |ϕ| = ω

• ϕ is an assertion ⇐⇒ |ϕ| ∈ [ϕ] ⇐⇒ [ϕ] = ℘(|ϕ|)

Thus, questions are sentences that are classically true at any world. The
proposition expressed by an assertion ϕ always amounts to ℘(|ϕ|), which
means that in uttering an assertion ϕ, a speaker is taken to provide the
information that ϕ is true, and not to request any further information. Thus,
assertions behave in Inqb exactly as they do in classical logic. We will see in
section 5 that this classical behavior of assertions is also reflected in the logic
that Inqb gives rise to.

4.4 Examples

In this section we will consider some simple sentences and examine the propo-
sitions that they express. We consider a language with just one unary pred-
icate symbol, P , and two individual constants, a and b. Accordingly, we
assume that the domain of discourse consists of just two objects, denoted by
a and b, respectively. Our logical space, then, consists of four worlds, one in
which both Pa and Pb are true, one in which Pa is true but Pb is false, one
in which Pb is true but Pa is false, and one in which neither Pa nor Pb is
true. In figure 7, these worlds are labeled 11, 10, 01, and 00, respectively.
As usual, in order to keep the pictures orderly we display only the maximal
elements of a proposition.
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Figure 7: The propositions expressed by some simple sentences.

Atomic sentences. Let us first consider the proposition expressed by one
of the two atomic sentences in our language, Pa. According to the clause
for atomic sentences, [Pa] consists of all states s such that every world in s
makes Pa true: these states are {11, 10}, {11}, {10}, ∅. Thus, [Pa] has a
greatest element, namely the state {11, 10} depicted in figure 7(a). Fact 12
therefore ensures that Pa is an assertion, and thus, according to fact 14, it
behaves just like in the classical setting, providing the information that Pa
is true and not requesting any further information.

Analogously, the other atomic sentence in our language, Pb, is an as-
sertion which provides the information that Pb is true. The proposition
expressed by Pb is depicted in figure 7(b).

Disjunction. Next, we consider the disjunction Pa∨Pb. According to the
clause for disjunction, [Pa ∨ Pb] consists of those states that are either in
[Pa] or in [Pb]. These are {11, 10}, {11, 01}, {11}, {10}, {01}, and ∅.
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Since |Pa ∨ Pb| = {11, 10, 01} �= ω, the sentence Pa ∨ Pb is informative.
More precisely, it provides the information that either Pa or Pb is true. How-
ever, unlike in the case of atomic sentences, in this case there is no greatest
possibility that includes all the others. Instead, there are two maximal pos-
sibilities, {11, 10} and {11, 01}, which together contain all the others. Thus,
according to fact 12, Pa ∨ Pb is not an assertion, but it is inquisitive. In
order to settle the issue raised by Pa∨Pb, one has to establish either a state
s ⊆ {11, 10} = |Pa|, or a state s ⊆ {11, 01} = |Pb|. In the former case, one
establishes that Pa is true; in the latter, one establishes that Pb is true.

Thus, in inquisitive semantics the formula Pa ∨ Pb is a hybrid, which
provides the information that at least one of the disjuncts is true, and requests
enough information to establish for at least one of the disjuncts that it is true.

Negation. Next, we turn to negation. According to the derived clause for
negation, [¬Pa] consists of all states s such that s does not have any world
in common with any state in [Pa]. Thus, [¬Pa] consists of all states that
do not contain the worlds 11 and 10, which are {01, 00}, {01}, {00}, and ∅,
as depicted in figure 7(d). Since this set of states has a greatest element,
namely {01, 00}, fact 12 ensures that ¬Pa is an assertion. And since the
behavior of assertions is classical, ¬Pa simply provides the information that
Pa is false, without requesting any further information.

Now let us consider the negation of a non-atomic sentence, ¬(Pa ∨ Pb).
According to the clause for negation, [¬(Pa∨Pb)] consists of all states which
do not have any world in common with any state in [Pa∨Pb]. Thus, [¬(Pa∨
Pb)] consists of all states that do not contain the worlds 11, 10, and 01, which
are {00} and ∅, as depicted in figure 7(e). Again, there is a unique maximal
possibility, namely {00} = |¬(Pa ∨ Pb)|. Thus, ¬(Pa ∨ Pb) is an assertion,
which behaves classically, providing the information that both Pa and Pb
are false, and not requesting any further information.

These cases of negative sentences exemplify a general fact which is ap-
parent from the semantic clause for negation (fact 10): for any sentence ϕ,
the proposition [¬ϕ] always contains a greatest element, namely

�
[ϕ] = |ϕ|.

Thus, a negative formula ¬ϕ is always an assertion, which provides the in-
formation that ϕ is false. We will come back to this property of negation in
section 4.5.
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Interrogatives. Let us now consider another simple sentence involving
both negation and disjunction, the interrogative ?Pa, defined as Pa ∨ ¬Pa.
We have already seen what [Pa] and [¬Pa] look like. According to the clause
for disjunction, [?Pa] = [Pa∨¬Pa] consists of all states that are either in [Pa]
or in [¬Pa]. These states are {11, 10}, {01, 00}, and all substates thereof,
as depicted in figure 7(f). Since |?Pa| = |Pa ∨ ¬Pa| = ω, the sentence ?Pa
is not informative, that is, it is a question. However, since [?Pa] does not
have a unique greatest element, it is inquisitive. In order to settle the issue
raised by ?Pa, one has to establish either a state s ⊆ {11, 10} = |Pa|, or
a state s ⊆ {01, 00} = |¬Pa|. In the former case, one establishes that Pa
is true; in the latter, one establishes that Pa is false. Hence, in order to
settle the issue raised by ?Pa, one has to establish whether Pa is true. Thus,
while ?Pa is a shorthand for Pa ∨ ¬Pa, perhaps the most famous classical
tautology, this formula is not a tautology in Inqb: instead, it correponds to
the polar question “whether Pa”. Analogously, ?Pb, depicted in figure 7(g),
correponds to the polar question “whether Pb”.

Conjunction. Now let us consider conjunction. First, let us look at the
conjunction of our two atomic sentences, Pa and Pb. According to the clause
for conjunction, [Pa∧Pb] consists of those states that are both in [Pa] and in
[Pb]. These are {11} and ∅. Thus, [Pa∧Pb] has a greatest element, namely
{11}, and accordingly Pa∧Pb is an assertion which, just like in the classical
case, provides the information that both Pa and Pb are true.

Now let us look at the conjunction of two complex sentences, the polar
questions ?Pa and ?Pb. As depicted in figure 7(i), the proposition [?Pa∧?Pb]
consists of the states {11}, {10}, {01}, {00} and ∅. Since |?Pa ∧ ?Pb| = ω,
our conjunction is a question. Moreover, since there is no unique maximal
possibility, this question is inquisitive. In order to settle the issue it raises,
one has to provide enough information to establish at least one of Pa ∧ Pb,
Pa∧¬Pb, ¬Pa∧Pb, ¬Pa∧¬Pb. Thus, our conjunction is a question which
requests enough information to settle both the issue whether Pa, raised by
?Pa, and the issue whether Pb, raised by ?Pb.

These two cases of conjunctive formulas exemplify a general fact: if ϕ
and ψ are assertions, then the conjunction ϕ ∧ ψ is itself an assertion which
provides both the information provided by ϕ and the information provided
by ψ; and if ϕ and ψ are questions, then the conjunction ϕ ∧ ψ is itself
a question, which requests the information needed to settle both the issue
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raised by ϕ and the issue raised by ψ.

Implication. Next, let us consider implication. Again, we will first con-
sider a simple case, Pa → Pb, where both the antecedent and the consequent
are atomic. According to the clause for implication, [Pa → Pb] consists of
all states s such that every substate t ⊆ s that is in [Pa] is also in [Pb].
These are precisely the states s such that s ⊆ {11, 01, 00}, as depicted in
figure 7(j). So, [Pa → Pb] has a greatest element, |Pa → Pb| = {11, 01, 00},
which means that the implication Pa → Pb is an assertion which, just like
in the classical setting, provides the information that if Pa is true, then so
is Pb.

Now let us consider a more complex case, Pa → ?Pb, where the conse-
quent is the polar question “whether Pb”. As depicted in figure 7(k), the
proposition [Pa → ?Pb] consists of the states {11, 01, 00}, {10, 01, 00}, and
all substates thereof. Since |Pa →?Pb| = ω, our implication is a question.
Moreover, since there is no unique greatest possibility, this question is inquis-
itive. In order to settle the issue it raises, one must either establish a state
s ⊆ {11, 01, 00} = |Pa → Pb|, or a state s ⊆ {10, 01, 00} = |Pa → ¬Pb|. In
the former case one establishes that if Pa is true then so is Pb; in the latter
case, that if Pa is true then Pb is false. So, in Inqb the sentence Pa → ?Pb
is a question which requests the information needed to establish whether Pb
is the case under the assumption that Pa is the case.

Again, these two cases of conditional formulas exemplify a general feature
of Inqb: if ψ is an assertion, then ϕ → ψ is an assertion which provides the
information that if ϕ is true, then so is ψ; and if ψ is a question, then ϕ → ψ
is a question which requests the information needed to settle the issue raised
by ψ assuming the information provided by ϕ and a resolution of the issue
raised by ϕ.

Quantification. Finally, let us consider existential and universal quan-
tification. As usual, existential quantification behaves essentially like dis-
junction and universal quantification behaves essentially like conjunction.
In fact, since our current domain of discourse consists of only two objects,
denoted by a and b, respectively, ∃x.Px expresses exactly the same propo-
sition as Pa ∨ Pb, depicted in figure 7(c), and ∀x.Px expresses exactly the
same proposition as Pa ∧ Pb, depicted in figure 7(h). Finally, consider the
proposition expressed by ∀x.?Px, depicted in figure 9(b). Notice that this
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proposition induces a partition on the logical space, where each block of the
partition consists of worlds that agree on the extension of P . Thus, ∀x.?Px
is a question that asks for an exhaustive specification of the objects that have
the property P . This concludes our illustration of the behavior or the logical
constants in Inqb.

4.5 Syntactic properties of questions and assertions

Assertions were defined in section 4.2 as sentences whose meaning consists
exclusively in their informative potential, and questions as sentences whose
meaning consists exclusively in their inquisitive potential. Notice that these
characterizations are semantic in nature. In this section we provide syntactic
conditions for sentences to be assertions or questions.

Let us start by examining assertions. The following fact provides some
sufficient syntactic conditions, which generalize the particular observations
made in the previous section.

Fact 15 (Sufficient conditions for assertionhood).

1. An atomic sentence R(t1 , . . . , tn) is an assertion;

2. ⊥ is an assertion;

3. if ϕ and ψ are assertions, then so is ϕ ∧ ψ;

4. if ψ is an assertion, then so is ϕ → ψ for any sentence ϕ;

5. if ϕ(d) is an assertion for all d ∈ D, then so is ∀xϕ(x).

This fact immediately yields the following corollary, which shows that dis-
junction and the existential quantifier are the only sources of inquisitiveness
in our logical language.

Corollary 1 (Sources of inquisitiveness).
Any sentence that does not contain ∨ or ∃ is an assertion.

Also, since a negation ¬ϕ is an abbreviation for ϕ → ⊥, items 2 and 4
combined yield the following corollary.

Corollary 2 (Negations are assertions).
¬ϕ is an assertion for any ϕ.
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Now let us turn to syntactic conditions for being a question, which again
generalize our particular observations in the previous section.

Fact 16 (Sufficient conditions for questionhood).

1. Any classical tautology is a question;

2. if ϕ and ψ are questions, so is ϕ ∧ ψ;

3. if ψ is a question, then for any ϕ so are ϕ ∨ ψ and ϕ → ψ;

4. if ϕ(d) is a question for all d ∈ D, then so is ∀xϕ(x);

5. if ϕ(d) is a question for some d ∈ D, then so is ∃xϕ(x).

4.6 Projection operators

We proposed in section 4.2 to regard sentences of Inqb as inhabiting a two
dimensional space, where assertions lie on the horizontal axis and questions
on the vertical axis. A natural question that arises, then, is whether we can
define projection operators on this space, i.e., whether there are natural ways
to turn any given sentence into an assertion, or into a question.

Suppose we add an operator A to our language, which is intended to
behave as a non-inquisitive projection operator, turning every sentence into
an assertion. How should the semantic contribution of A be defined in order
for it to behave as a proper non-inquisitive projection operator? First of all,
for any ϕ, Aϕ should be an assertion. Moreover, it is natural to require that,
while trivializing inquisitive content, A should preserve informative content,
that is, Aϕ should have the same informative content as ϕ.

Definition 26 (Non-inquisitive projection operator).
We call an operator A a non-inquisitive projection operator just in case for
any ϕ:

• Aϕ is an assertion

• info(Aϕ) = info(ϕ)

Now, in section 4.2 we saw that the meaning of an assertion ϕ is completely
determined by its informative component: if ϕ is an assertion, we must have
that [ϕ] = ℘(info(ϕ)). This means that the semantic behavior associated
with a non-inquisitive projection operator is uniquely determined.
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Fact 17 (Uniqueness of the non-inquisitive projection operator).
A is a non-inquisitive projection operator if and only if [Aϕ] = ℘(info(ϕ)).

Now, recall that the declarative !ϕ was defined as an abbreviation for ¬¬ϕ.
According to corollary 2, !ϕ is an assertion for any ϕ. Moreover, using fact
13 we have that info(!ϕ) = |!ϕ| = |¬¬ϕ| = |ϕ| = info(ϕ), which shows that !
preserves informative content. This means that the declarative operator ! is
a non-inquisitive projection operator. Moreover, the previous fact guarantees
that any non-inquisitive projection operator must be equivalent with it.

Fact 18 (! is the non-inquisitive projection operator).

• The declarative operator ! is a non-inquisitive projection operator;

• If A is a non-inquisitive projection operator, then [Aϕ] = [!ϕ] for all ϕ.

Identifying what requirements we should place on a non-informative projec-
tion operator Q is less straightforward. Obviously, we should require Q to
trivialize informative content; that is, Q should turn any formula ϕ into a
question Qϕ. But we cannot just require Q to preserve inquisitive content:
for, if ϕ and Qϕ do not have the same informative content, then the inquis-
itive content of ϕ and the inquisitive content of Qϕ are issues over different
states, and therefore they are necessarily different objects.

To solve this problem, we will associate to any formula an issue D(ϕ) over
ω, no matter what the informative content of ϕ is. This issue requests enough
information to either settle the issue [ϕ], thus locating the actual world in
a possibility for ϕ, or to reject the informative content of ϕ altogether, thus
locating the actual world outside of any possibility for ϕ and making the
issue [ϕ] insubstantial.

Definition 27 (Settling, contradicting, and deciding on a proposition).
Let s be an information state and A a proposition. Then we say that:

• s settles A in case s ∈ A;

• s contradicts A in case s ∩ info(A) = ∅;

• s decides on A in case s settles A or s contradicts A.

Definition 28 (Decision set).
The decision set D(ϕ) of a sentence ϕ is the set of states that decide on [ϕ].
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The decision set of a sentence can be characterized explicitly as follows.

Fact 19. For any ϕ, D(ϕ) = [ϕ] ∪ [ϕ]∗

Notice that the decision set D(ϕ) of a sentence ϕ is always an issue over ω,
no matter what the informative content of ω is. Therefore, we can require of
a non-informative projection operator Q that it preserve the decision set of
the sentence it applies to.

Definition 29 (Non-informative projection operator).
We call an operator Q a non-informative projection operator just in case for
any ϕ:

• Qϕ is a question;

• D(Qϕ) = D(ϕ).

Now suppose that Q is a non-informative projection operator. Then for
any ϕ, Qϕ should be a question, which means that the informative content
of Qϕ should be ω. But then [Qϕ]∗ = ℘(info(Qϕ)) = {∅}, and therefore
D(Qϕ) = [Qϕ]∪ [Qϕ]∗ = [Qϕ]. But since Q should preserve the decision set
of ϕ, we must also have D(Qϕ) = D(ϕ) = [ϕ] ∪ [ϕ]∗. Putting these things
together, we obtain that we must have [Qϕ] = [ϕ] ∪ [ϕ]∗. We have thus
found that the requirements we placed on Q uniquely determine its semantic
behavior.

Fact 20 (Uniqueness of the non-informative projection operator).
Q is a non-informative projection operator if and only if [Qϕ] = [ϕ] ∪ [ϕ]∗.

Now recall that the interrogative operator ? was introduced by the conven-
tion that ?ϕ abbreviates ϕ∨¬ϕ. Spelling out the semantics of negation and
disjunction, we have that [?ϕ] = [ϕ ∨ ¬ϕ] = [ϕ] ∪ [ϕ]∗. Thus, the interrog-
ative operator ? is a non-informative projection operator. Moreover, the
previous fact guarantees that any non-informative projection operator must
be equivalent with it.

Fact 21 (? is the non-informative projection operator).

• The interrogative operator ? is a non-informative projection operator;

• If Q is a non-informative projection operator, [Qϕ] = [?ϕ] for all ϕ.

31

Questions

Assertions

ϕ ≡ !ϕ ∧ ?ϕ
?ϕ

!ϕ

Figure 8: Non-informative and non-inquisitive projections.

Thus, for any sentence ϕ, the projection operators yield an assertion !ϕ which
has the same informative content as ϕ, and a question ?ϕ which has the same
decision set as ϕ. The following fact says that the full meaning of ϕ can then
be reconstructed as the conjunction of these “pure components”. Thus, we
obtain a representation of the meaning of ϕ in which the labor is divided
between an assertion, that takes care of the informative content of ϕ, and a
question, that takes care of the inquisitive content of ϕ.

Fact 22 (Division). For any ϕ, ϕ ≡ !ϕ ∧ ?ϕ

4.7 Propositions expressed in a state and support

When a sentence ϕ is uttered in a context s, it expresses a proposition [ϕ]s
which embodies a proposal to enhance the context s in certain ways. As dis-
cussed in section 2.3, this proposition is obtained by restricting the absolute
proposition [ϕ] expressed by ϕ to s.

Definition 30 (Proposition expressed by a sentence in a state).
The proposition [ϕ]s expressed by a sentence ϕ in a state s is defined as:

[ϕ]s = [ϕ]�s = {t ⊆ s | t ∈ [ϕ]}

The informative content of this proposition is the set info([ϕ]s) =
�
[ϕ]s .

Using the definition of [ϕ]s and the fact that
�
[ϕ] = |ϕ|, it is easy to see that

info([ϕ]s) = |ϕ|∩ s. We denote this set by |ϕ|s and we call it the information

provided by ϕ in s.
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Definition 31 (Information provided by a sentence in a state).
The information |ϕ|s provided by a sentence ϕ in a state s is the state |ϕ|∩s.

Now, we will say that a sentence ϕ is informative (resp. inquisitive) in s in
case it expresses an informative (resp. inquisitive) proposition in s.

Definition 32 (Informativeness and inquisitiveness in a state).

• ϕ is informative in s iff the proposition [ϕ]s is informative in s.

• ϕ is inquisitive in s iff the proposition [ϕ]s is inquisitive in s.

The following fact provides an explicit characterization of informativeness
and inquisitiveness of a sentence in a state in terms of the information it
provides and the proposition it expresses in that state.

Fact 23 (Informativeness and inquisitiveness in a state).

• ϕ is informative in s iff |ϕ|s �= s.

• ϕ is inquisitive in s iff |ϕ|s �∈ [ϕ]s .

If ϕ is neither informative nor inquisitive in s, then an utterance of ϕ in the
context s has no effect at all. In this case, we say that s supports ϕ.

Definition 33 (Support).
A state s supports a sentence ϕ, in symbols s |= ϕ, in case s is neither
informative nor inquisitive in s.

Spelling out the definition of informativeness and inquisitiveness in a state,
we see that s supports ϕ if and only if |ϕ|s ∈ [ϕ]s and |ϕ|s = s, that is, if and
only if s ∈ [ϕ]s . And since [ϕ]s = {α ⊆ s |α ∈ [ϕ]}, the condition s ∈ [ϕ]s is
equivalent to s ∈ [ϕ]. Hence, we have found the following tight connection
between support and the proposition expressed by a sentence.

Fact 24 (Propositions and support).
For any sentence ϕ and any state s:

s |= ϕ ⇐⇒ s ∈ [ϕ]
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Support is to meanings in Inqb what truth is to classical meanings. Indeed,
if we write w |= clϕ for “ϕ is classically true in w”, the connection between
classical truth and classical meanings can be formulated as follows:

w |=clϕ ⇐⇒ w ∈ |ϕ|

Just like the proposition expressed by ϕ in classical logic coincides with the
set of worlds where ϕ is true, the proposition expressed by ϕ in Inqb coincides
with the set of states where ϕ is supported. As a consequence, just like
classical logic can be characterized by means of a recursive definition of the
truth conditions of the sentences in the language, Inqb can be characterized
by a recursive definition of the support conditions of the sentences in the
language. These support conditions are as follows.

Fact 25 (Support).

1. s |= R(t1 , . . . , tn) iff s ⊆ |R(t1 , . . . , tn)|

2. s |= ⊥ iff s = ∅

3. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

4. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

5. s |= ϕ → ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

6. s |= ∀xϕ(x) iff for all d ∈ D, s |= ϕ(d)

7. s |= ∃xϕ(x) iff for some d ∈ D, s |= ϕ(d)

In much previous work on inquisitive semantics (e.g. Groenendijk and Roelof-
sen, 2009; Ciardelli, 2009; Ciardelli and Roelofsen, 2011), support is indeed
presented as the basic semantic notion, with propositions and meanings as
derived notions. One advantage of this approach is that it parallels the usual
presentation of classical logic, with truth as the basic notion. Another advan-
tage is that the support conditions immediately suggests a connection with
intuitionistic logic. The set of non-empty states, ordered by the relation
⊇, constitutes a Kripke frame for intuitionisitic logic. The support clauses
amount precisely to the usual Kripke semantics for intuitionistic logic on
this frame, the particular valuation function being provided by the clause for
atoms. This connection is explored in depth in Ciardelli (2009) and Ciardelli
and Roelofsen (2011).
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Here, we have chosen a different route. The main reason for this is that
the current presentation of the semantics brings out more explicitly how the
notion of meaning is reshaped according to our needs. The algebraic perspec-
tive presented in section 3, then, allows us to motivate the clauses of Inqb in a
solid way, relying only on the structure of our new space of meanings. Thus,
unlike the support-based approach, which is only motivated a posteriori, this
mode of presentation flows directly from the abstract motivations and the
philosophical underpinnings of the system to its concrete implementation.

Moreover, given the intuitive interpretation of support in terms of in-
significance (non-informativeness and non-inquisitiveness), the notion has a
negative flavour to it, and its relation to the positive contribution of a sen-
tence, as given in terms of its potential, is intuitively far from immediate. The
current presentation focuses on this positive side, hopefully reflecting more
directly how inquisitive semantics can be used in modeling conversation.

5 Inquisitive logic

In this section, we will be concerned with the logic that Inqb gives rise to. We
will show that this logic is an intermediate logic, i.e., a logic in between clas-
sical and intuitionistic logic, which is not closed under uniform substitution.
While relatively little is known about the general first-order system, with
only some preliminary results in Ciardelli (2009), propositional inquisitive
logic has been investigated in detail, and much is known about it, including
a range of axiomatizations and its precise relation to classical and intuition-
istic logic. We will present a number of results that hold for the general
first-order case in section 5.1 and then zoom in on the propositional case in
section 5.2.5

5.1 First-order inquisitive logic

Recall from section 4.1 that a sentence ϕ entails another sentence ψ in Inqb
iff [ϕ] ⊆ [ψ]. We write ϕ |= InqQL ψ in this case. We say that a formula ϕ is
valid in inquisitive semantics iff it expresses a tautology, i.e., iff [ϕ] = ℘(ω).

5
This section is based on Ciardelli (2009) and Ciardelli and Roelofsen (2011). For

proofs and more comprehensive discussion of the logical issues discussed here, the reader

is referred to these sources.
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The set of first-order formulas that are valid in inquisitive semantics is called
inquisitive first-order logic and is denoted by InqQL.

Definition 34 (Logic). InqQL := {ϕ | [ϕ] = ℘(ω)}.

As usual, the relation between entailment and validity is provided by the
deduction theorem.

Fact 26 (Deduction theorem). For any two formulas ϕ and ψ:

ϕ |=InqQL ψ ⇐⇒ ϕ → ψ ∈ InqQL

We will use IQL and CQL to denote intuitionistic and classical first-order logic
respectively, and |= IQL and |= CQL to denote the corresponding entailment
relations.

Now, if a formula ϕ expresses a tautology in inquisitive semantics, in
particular it is not informative; therefore, by fact 13, it is a classical tautology.
Formally, this simply amounts to the observation that if [ϕ] = ℘(ω), then
|ϕ| =

�
[ϕ] = ω. So, inquisitive logic in contained in classical first-order logic.

Fact 27. InqQL ⊆ CQL.

This inclusion is strict: for instance, in section 4 we saw that one of the most
famous classical tautologies, p∨¬p, expresses a polar question in inquisitive
semantics, not a tautology.

However, there is an important class of formulas on which inquisitive and
classical logic coincide: assertions. This is to be expected, since assertions
are those formulas whose meaning consist exclusively of informative content,
just like in the classical case.

Fact 28 (Assertions behave classically). If ϕ and ψ are assertions,

ϕ |=InqQL ψ ⇐⇒ ϕ |=CQL ψ

In particular, since any formula which does not contain disjunction or the
existential quantifier is an assertion (corollary 1), inquisitive logic coincides
with classical logic on the whole ∨, ∃−free fragment of the language.

There is also something interesting to say about the other most famous
classical tautology, i.e., the law of double negation, ¬¬ϕ → ϕ.

Fact 29. ¬¬ϕ → ϕ is in InqQL iff ϕ is an assertion.
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This means that assertions are precisely the class of formulas on which in-
quisitive and classical entailment coincide.

Notice that the double negation law holds for atoms, which are assertions,
but fails to hold in general. This simple fact displays a peculiar feature of
InqQL: it is not closed under uniform substitution. That is, if ϕ ∈ InqQL and
we replace the atoms in ϕ with arbitrary formulas, we have no guarantee
that the resulting formula will be valid as well.

This is due to the fact that, in inquisitive semantics, atomic formulas
do not express generic propositions. They are assertions, and thus have the
special property of being equivalent with their own double negation. Indeed,
one can prove that substituting atoms by assertions in a valid formula always
results in a valid formula.

In section 3 we have seen that the algebra (Π,⊆) of inquisitive meanings
forms a complete Heyting algebra. Our semantics simply amounts to evaluat-
ing formulas in this particular structure, interpreting the logical constants as
the corresponding algebraic operations. In this perspective, InqQL is the the-
ory of a particular Heyting-valued model. Since intuitionistic first-order logic
can be characterized as the set of those formulas valid in all Heyting-valued
models (Troelstra and van Dalen, 1988), we have the following result.

Fact 30. IQL ⊆ InqQL.

This inclusion is also strict. For instance, we have seen that the double
negation law holds for atoms in InqQL, whereas this is not the case in IQL.

Summing up the results in this section: InqQL is a logic lying in between
intuitionistic and classical first-order logic, not closed under uniform substi-
tution. A number of non intuitionistically valid principles are known to hold
in InqQL (see Ciardelli, 2009). However, the axiomatic characterization of
InqQL remains an open problem.

5.2 Propositional inquisitive logic

In this section, we will restrict our attention to inquisitive logic for a proposi-
tional language, which we denote as InqPL. Intuitionistic and classical propo-
sitional logic will be denoted by IPL and CPL respectively.

It is immediate that all the facts stated in the previous section for InqQL
also hold for InqPL. In particular, InqPL is an intermediate logic that is not
closed under uniform substitution. But what logic is it exactly? Can it be
described by means of a natural axiomatization?
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This time, we will be able to answer these questions in the positive.
Let’s start once again from classical logic. In that setting, all formulas are
assertions. On the proof-theoretic side, this is witnessed by the fact that any
formula is equivalent to a negation, for instance to its own double negation.

Fact 31. There exists a recursively defined map nt s.t. for any ϕ:

1. nt(ϕ) is a negation;

2. ϕ ≡CPL nt(ϕ).

Once classical meanings are expressed by means of negations, any difference
between classical and intuitionistic logic vanishes.

Fact 32. If ϕ and ψ are negations, then:

ϕ |=CPL ψ ⇐⇒ ϕ |=IPL ψ

This means that, in a very precise sense, classical logic can be regarded as the
negative fragment of intuitionistic logic, and the map nt—commonly known
as negative translation—provides an embedding.

The situation is very similar for inquisitive logic. Now, formulas are no
longer assertions in general. However, in the propositional setting, a formula
is always equivalent to a disjunction of assertions, that is, to a disjunction of
negations. This syntactic feature reflects the fact that inquisitive meanings
are sets (disjunctions) of classical meanings (negations).

Fact 33. There exists a recursively defined map dnt s.t. for any ϕ:

1. dnt(ϕ) is a disjunction of negations;

2. ϕ ≡InqPL dnt(ϕ).

Moreover, once an inquisitive meaning of a formula is expressed as a disjunc-
tion of negations, inquisitive and intuitionistic logic coincide.

Fact 34. If ϕ and ψ are disjunctions of negations, then

ϕ |=InqPL ψ ⇐⇒ ϕ |=IPL ψ
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This means that inquisitive logic can be regarded as the disjunctive-negative
fragment of intuitionisitic logic, and that dnt—which we refer to as the
disjunctive-negative translation—provides an embedding.

Thus, the algebra of intuitionistic meanings6 provides a very rich environ-
ment, in which certain particular meanings, those associated to disjunctions
of negations, correspond to the meanings of inquisitive semantics; among
these, in turn, the meanings associated to negations represent the spectrum
of classical meanings, that is, of meanings of assertions.

The disjunctive-negative translation dnt provides the key to understand-
ing the logical properties of propositional inquisitive logic. As we have seen,
it clarifies the way in which InqPL sits in between IPL and CPL. But it does
more than that: it also paves the way for a completeness result.

For, suppose that L is an extension of intuitionistic logic which “justifies
the disjunctive negative translation”, in the sense that for any ϕ, L proves
that ϕ and dnt(ϕ) are equivalent. We write �L for provability in L.

Consider a valid inquisitive entailment, ϕ |= InqPL ψ. Then we also have
that dnt(ϕ) |=InqPL dnt(ψ) and therefore by proposition 34, dnt(ϕ)|=IPL dnt(ψ).
But then, since L extends IPL, dnt(ϕ) �L dnt(ψ).

Since L justifies dnt, we also have ϕ �L dnt(ϕ) and dnt(ψ) �L ψ, whence,
putting everything together, ϕ �L ψ. Therefore, L is a complete derivation
system for InqPL.

We are only left with the task of identifying what is needed, on top of
intuitionistic logic, to justify dnt. Analyzing the inductive definition of the
map dnt, we see that two extra ingredients suffice.

1. Atomic double negation axioms ¬¬p → p, needed for the translation
of atoms;

2. For any number n, any instance of the following scheme, needed to
justify the translation of implication:

(NDn) (¬ϕ →
�

1≤i≤n ¬ψi) →
�

1≤i≤n(¬ϕ → ¬ψi)

The intermediate logic that is obtained by expanding IPL with the
schemata NDn for all natural numbers n is called ND. It has been inves-
tigated by Maksimova (1986).

6
Here we use the word meanings for equivalence classes of formulas; for classical and

inquisitive logic, for which we have a semantical notion of meaning, there is a bijective

correspondence between the two notions.
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These considerations yield the following sound and complete axiomatization
of InqPL.

Theorem 1 (Completeness theorem). ND augmented with double negation
for atoms constitutes a sound and complete axiomatization of InqPL.

The infinite family of axioms {NDn |n ∈ N} may be substituted by a single,
stronger axiom, known as the Kreisel-Putnam axiom.

(KP) (¬ϕ → ψ ∨ χ) → (¬ϕ → ψ) ∨ (¬ϕ → χ)

The Kreisel-Putnam logic KP is obtained by expanding IPL with the schema
KP. The logic KP is strictly stronger than Maksimova’s logic ND. However,
when augmented with atomic double negation axioms, both logics amount
to the same thing, namely InqPL.

Theorem 2 (Completeness theorem). KP augmented with double negation
for atoms also constitutes a sound and complete axiomatization of InqPL.

We have thus reached what is perhaps the most elegant axiomatization of
InqPL. However, it should be remarked that there is a whole range of inter-
mediate logics Λ which, expanded with atomic double negation, yield InqPL.
In Ciardelli (2009); Ciardelli and Roelofsen (2011), this range is precisely
characterized as the set of logics included between ND and a logic called
Medvedev’s logic.

6 Relevance for natural language semantics

So far, we have motivated inquisitive semantics at a rather abstract level,
specified a concrete system, Inqb, and investigated the main features of this
basic system. In this section, we discuss the relevance of inquisitive semantics,
and in particular of Inqb, for natural language semantics. We start with a
very general discussion of the role that inquisitive semantics is intended to
play in the semantic analysis of natural language. Then we discuss three
different perspectives on inquisitiveness that are all in principle compatible
with the basic philosophy behind the framework. Finally, we discuss the
specific treatment of the logical connectives and the projection operators in
Inqb, and the possible significance thereof for natural language semantics,
paying particular attention to disjunction and existential quantification as
sources of inquisitiveness.
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Figure 9: Two possible analysis of wh-interrogatives.

6.1 Inquistive semantics as a semantic framework

Inquisitive semantics is, first and foremost, intended to serve as a frame-

work for natural language semantics. This means that it does not constitute
a specific theory of any particular construction in any particular language.
Rather, it is intended to provide the formal tools that are necessary to for-
mulate, compare, and further develop such theories.

This is perhaps best illustrated by means of an example. Consider the
wh-interrogative in (1).

(1) Who is coming to the party?

Inqb provides a certain space of meanings, and associates these meanings in
a particular way with formulas in a first-order language. But it leaves open
how these meanings/formulas should be linked to sentences in natural lan-
guage. For instance, the sentence in (1) may be associated with the formula
?∃x.Px and the corresponding meaning, in line with Hamblin’s (1973) and
Karttunen’s (1977) analysis of wh-interrogatives, illustrated in figure 9(a).
But it may also be associated with the formula ∀x.?Px and the correspond-
ing meaning, in line with Groenendijk and Stokhof’s (1984) partition theory
of wh-interrogatives, illustrated in figure 9(b). Both type of theories may be
formulated, compared, and possibly adapted or combined within the frame-
work.

6.2 Three perspectives on inquisitiveness

The proposition [ϕ] expressed by a sentence ϕ in Inqb embodies the issue that
is raised in uttering ϕ. In order to settle this issue, other participants must
provide enough information to establish one of the states in [ϕ]. Moreover, we
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have been assuming implicitly that, when raising an issue in a conversation,
a speaker requests a response from other participants that settles the issue.
However, the latter assumption is independent of the basic philosophy behind
the framework, and is not reflected in any way by its formal implementation.
Alternatively, we may just as well assume that a speaker, when raising an
issue in a conversation, merely invites a response from other participants
that settles the issue. Or we may adopt a more context-sensitive perspective,
and assume that in uttering a sentence ϕ in a state s, a speaker requests a
response that settles [ϕ] just in case ϕ is purely inquisitive (not informative)
in s. These three perspectives on inquisitiveness are listed below.

1. The strong perspective. In uttering a sentence ϕ in a state s,
a speaker requests a response from other participants that provides
enough information to establish one of the states in [ϕ]s .

2. The weak perspective. In uttering a sentence ϕ in a state s, a
speaker invites a response from other participants that provides enough
information to establish one of the states in [ϕ]s .

3. The context-sensitive perspective. In uttering a sentence ϕ in
a state s, a speaker invites a response from other participants that
provides enough information to establish one of the states in [ϕ]s , and
she requests such a response just in case ϕ is purely inquisitive (not
informative) in s.

As mentioned above, we have assumed the strong perspective in these notes.
But the other perspectives are equally viable, and have indeed been adopted
elsewhere. For instance, the weak perspective can be found in Groenendijk
(2009), and the context-sensitive perspective in AnderBois (2011).

This said, it is important when using inquisitive semantics as a frame-
work for linguistic analysis to always explicitly choose a particular perspec-
tive on inquisitiveness. After all, the predictions of a theory formulated in
the framework are partly determined by the perspective on inquisitiveness
that is assumed. To illustrate this point, consider the following disjunctive
declarative sentence.

(2) Alf or Bea will play the piano tonight.

Suppose we have a theory that associates this sentence with the formula Pa∨
Pb and the corresponding meaning. This means that the sentence is predicted

42



to be inquisitive. If we adopt the weak perspective on inquisitiveness, this
prediction is reasonable. However, if we adopt the strong perspective on
inquisitiveness, the prediction is wrong. After all, in uttering (2) a speaker
does not request a response from other participants that establishes that Alf
will play the piano or that Bea will play the piano. Under a strong perspective
on inquisitiveness, (2) should not be associated with Pa∨Pb but rather with
!(Pa ∨ Pb) and the corresponding meaning, which is not inquisitive.

Under the weak perspective, certain basic contrasts cannot be captured.
Consider, for instance, the polar interrogative in (3), in comparison with the
disjunctive declarative in (2).

(3) Will Alf play the piano tonight?

There is a clear intuition that (3) is inquisitive in a strong sense: in uttering
this sentence, a speaker does not just invite, but really requests a response
from other participants that establishes whether Alf will play the piano or
not. In this sense there is a clear contrast between (2) and (3). Under the
strong perspective, this contrast can be captured straightforwardly. Under
the weak perspective, it cannot be captured because sentences, even if in-
quisitive, are never predicted to request an informative response.

6.3 Basic operations on meanings

We identified certain basic operations on meanings in Inqb: the algebraic
meet, join, and (relative) pseudo-complement operators, as well that the non-
informative and non-inquisitive projection operators. We defined a semantics
for the language of first-order logic, in which the basic logical connectives, as
well as ! and ?, are associated with these basic operations on meanings: con-
junction behaves as a meet operator, disjunction behaves as a join operator,
! behaves as a non-inquisitive projection operator, etcetera.

Of course, natural languages are much more intricate than the language of
first-order logic. However, if we take sentences in natural language to have the
type of meanings considered here, then it is natural to expect that it is also
possible in these language to express the basic operations on such meanings.
In other words, it is to be expected that natural languages will generally
have certain words or constructions whose semantic function (possibly among
others) is to produce, say, the non-informative projection of a proposition,
or the meet of two propositions.
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It seems plausible to assume that in the specific case of English, the meet
of two propositions is constructed using the word and, the join is constructed
using or, the relative pseudo-complement is constructed using if. . . then, and
the pseudo-complement is constructed using not. This is not to say that this
is the only semantic function that these words may have. But the expectation
that the language makes it possible to express the basic algebraic operations
on meanings seems to be borne out in the case of English, and many other
languages alike.

As for the projection operators, it seems plausible to hypothesize that
these are expressed in English and many other languages by declarative and
interrogative complementizers. More specifically, it seems plausible to treat
the declarative complementizer in English as !, the wh-interrogative comple-
mentizer as ?, and the polar interrogative complementizer as ?!. A detailed
examination of this analysis is beyond the scope of these notes. Importantly,
however, note that the framework also allows us to formulate alternative
analyses. As emphasized above, the framework as such does not make any
direct predictions about the semantic behavior of any specific constructions
in any specific language. It mainly offers the logical tools that are necessary
to formulate such analyses, and gives rise to the expectation that, in general,
natural languages will have ways to express the basic algebraic operations
and the basic projection operations on meanings.

6.4 Inquisitive disjunction and indefinites

Among the basic operations on meanings that we have considered, the join

operator is the essential source of inquisitiveness: without applying this op-
erator, it is impossible to produce inquisitive meanings from non-inquisitive
ones. In Inqb, disjunction, the existential quantifier, and the non-informative
projection operator all behave as join operators: [ϕ∨ψ] is the join of [ϕ] and
[ψ], [∃x.ϕ(x)] is the join of {[ϕ(d)] | d ∈ D}, and [?ϕ] is the join of [ϕ] and
[ϕ]∗. Thus, there is a close connection between the non-informative projection
operator, ?, which is naturally associated with interrogative complementizers
in natural languages, and disjunction / existential quantification. All these
constructions are sources of inquisitiveness. This fact may provide the ba-
sis for an explanation of the well-known observation that in many natural
languages, interrogative pronouns/complementizers are homophonous with
words for disjunction and/or indefinites (e.g., Japanese ka) (see Jayaseelan,
2001, 2008; Bhat, 2005; Haida, 2007; AnderBois, 2011, among others).

44



It is also interesting to note that there is a close connection between
the treatment of disjunction and existential quantification in Inqb, and their
treatment in alternative semantics (Kratzer and Shimoyama, 2002; Simons,
2005a,b; Alonso-Ovalle, 2006, 2008, 2009; Aloni, 2007a,b; Menéndez-Benito,
2005, 2010, among others). In both cases, disjunction and existentials are
taken to introduce sets of alternatives. In the case of alternative semantics,
this treatment is motivated by a number of empirical phenomena, including
free choice inferences, exclusivity implicatures, and conditionals with disjunc-
tive antecedents. The analysis of disjunction and existentials as introducing
sets of alternatives has made it possible to develop new accounts of these phe-
nomena which improve considerably on previous accounts. However, alterna-
tive semantics does not provide any motivation for the alternative treatment
of disjunction and indefinites independently of the linguistic phenomena at
hand. Moreover, the treatment of disjunction in alternative semantics has
been presented as a real alternative for the classical treatment of disjunction
as a join operator. Thus, it appears that adopting the alternative treatment
of disjunction forces one to give up the classical account.

The algebraically motivated inquisitive semantics presented here sheds
new light on these two issues. First, it shows that, once inquisitive content is
taken into consideration besides informative content, general algebraic con-
siderations lead essentially to the treatment of disjunction that was proposed
in alternative semantics, thus providing exactly the independent motivation
that has so far been missing. Moreover, it shows that the ‘alternative’ treat-
ment of disjunction is actually a natural generalization of the classical treat-
ment: disjunction is still taken to behave semantically as a join operator, only
now the meanings that this join operator applies to are more fine-grained in
order to capture both informative and inquisitive content. Thus, we can have
our cake and eat it: we can adopt a treatment of disjunction as introducing
sets of alternatives, and still characterize it as a join operator.

References

Aloni, M. (2007a). Free choice and exhaustification: an account of subtrig-
ging effects. In Proceedings of Sinn und Bedeutung , pages 16–30.

Aloni, M. (2007b). Free choice, modals and imperatives. Natural Language

Semantics , 15, 65–94.

45

Alonso-Ovalle, L. (2006). Disjunction in Alternative Semantics . Ph.D. thesis,
University of Massachusetts, Amherst.

Alonso-Ovalle, L. (2008). Innocent exclusion in an alternative semantics.
Natural Language Semantics , 16, 115–128.

Alonso-Ovalle, L. (2009). Counterfactuals, correlatives, and disjunction. Lin-
guistics and Philosophy , 32, 207–244.

AnderBois, S. (2011). Issues and alternatives . Ph.D. thesis, University of
California Santa Cruz.

Bhat, D. (2005). Pronouns . Oxford University Press.

Ciardelli, I. (2009). Inquisitive semantics and intermediate logics. Master
Thesis, University of Amsterdam.

Ciardelli, I. and Roelofsen, F. (2011). Inquisitive logic. Journal of Philosoph-
ical Logic, 40(1), 55–94.

Ciardelli, I., Groenendijk, J., and Roelofsen, F. (2012). Inquisitive semantics:
a new notion of meaning. Manuscript, submitted for publication.

Groenendijk, J. (2009). Inquisitive semantics: Two possibilities for disjunc-
tion. In P. Bosch, D. Gabelaia, and J. Lang, editors, Seventh International

Tbilisi Symposium on Language, Logic, and Computation. Springer-Verlag.

Groenendijk, J. and Roelofsen, F. (2009). Inquisitive semantics and prag-
matics. Presented at the Workshop on Language, Communication, and
Rational Agency at Stanford, May 2009, available via www.illc.uva.nl/
inquisitive-semantics.

Groenendijk, J. and Stokhof, M. (1984). Studies on the Semantics of Ques-

tions and the Pragmatics of Answers . Ph.D. thesis, University of Amster-
dam.

Haida, A. (2007). The Indefiniteness and Focusing of Wh-Words . Ph.D.
thesis, Humboldt University, Berlin.

Hamblin, C. L. (1973). Questions in Montague English. Foundations of

Language, 10, 41–53.

46



Jayaseelan, K. (2001). Questions and Question-word Incorporating Quanti-
fiers in Malayalam. Syntax , 4(2), 63–93.

Jayaseelan, K. (2008). Question particles and disjunction. Manuscript, The
English and Foreign Languages University, Hyderabad.

Karttunen, L. (1977). Syntax and semantics of questions. Linguistics and

Philosophy , 1, 3–44.

Kratzer, A. and Shimoyama, J. (2002). Indeterminate pronouns: The view
from Japanese. In Y. Otsu, editor, The Proceedings of the Third Tokyo

Conference on Psycholinguistics , pages 1–25.

Maksimova, L. (1986). On maximal intermediate logics with the disjunction
property. Studia Logica, 45, 69–75.

Menéndez-Benito, P. (2005). The grammar of choice. Ph.D. thesis, University
of Massachusetts, Amherst.

Menéndez-Benito, P. (2010). On universal free choice items. Natural Lan-

guage Semantics , 18, 33–64.

Roelofsen, F. (2011). Algebraic foundations for inquisitive semantics. In
H. van Ditmarsch, J. Lang, and J. Shier, editors, Proceedings of the Third

International Conference on Logic, Rationality, and Interaction, pages
233–243. Springer-Verlag.

Simons, M. (2005a). Dividing things up: the semantics of or and the
modal/or interaction. Natural Language Semantics , 13(3), 271–316.

Simons, M. (2005b). Semantics and pragmatics in the interpretation of or. In
E. Georgala and J. Howell, editors, Proceedings of Semantics and Linguistic

Theory (SALT 15), pages 205–222. Cornell University, CLC Publications.

Stalnaker, R. (1978). Assertion. Syntax and Semantics , 9, 315–332.

Troelstra, A. and van Dalen, D., editors (1988). Constructivism in mathe-

matics, an introduction, Vol. 2 . North-Holland.

47


