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1 Part II. First steps towards a formal ac-

count: Semantics and Logic via supervalua-

tion.

Things to be done in PART II:

1. Presentation of a model theory for a language L of Predicate Logic
with one 1-place vague predicate P

2. The semantics and Logic of Supervaluation

3. Piece-wise precisification

4. Formal versions of the Sorites

5. Accounting for the Sorites using Supervaluation Theory

6. Adding Determinateness

7. The Logic(s) of Total and Partial Semantics
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1. Model Theory for a language L of Predicate Logic with one
1-place vague predicate P

• Let L0 be a language of standard first order predicate logic.

We assume that all the standard operators of predicate logic – ¬, ∧, ∨,
→, ↔, ∀, ∃ – are primitive operators in L0.

N.B. This is to allow for the possibility of revising the semantics of so-
me of these operators later on in ways that deviate from the definitions
that one uses to define some operators in terms of others.

(E.g. the definitions one would use to define ∨,→,↔ and ∀ in case we
decide to restrict the set of primitive operators to ¬, ∧ and ∃).

• The non-logical constants of L0 include predicates, individual constants
and functors.
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• We assume the standard model-theoretic semantics for L0.

In order to be prepared for the move to partial semantics when we add
the vague predicate P to L0 we split all clauses of the truth definition
into a truth and a falsity clause.

(1) Def.

1. An extensional model for L0 is a structure M = < D, I >,
where D (the domain, or universe, of M) is a non-empty set and I
is the interpretation function of M . I is defined for the non-logical
constants of L0. If c is an individual constant, then I(c) ∈ D, if
Q is an n-place predicate, then I(Q) ⊆ Dn, and if f is an n-place
functor, then I(f) is a function from Dn to D.

2. An assignment for M is a function which assigns an element
of D to each variable.

3. Semantic values of terms and formulas: [τ ]M,g, the value of
term τ in M under assignment g and [φ]M,g, the truth value of
formula φ in M under assignment g, are defined as usual.
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–[vi]
M,g = g(vi); [c]M,g = I(c); [f(α1, .., αn)]M,g = I(f)([α1]

M,g, .., [αn]M,g).

–[Q(α1, .., αn)]M,g = 1 if < [α1]
M,g, .., [αn]M,g > ∈ I(Q);

–[Q(α1, .., αn)]M,g = 0 if < [α1]
M,g, .., [αn]M,g > /∈ I(Q);

–[¬φ]M,g = 1 iff [φ]M,g = 0;

–[¬φ]M,g = 0 iff [φ]M,g = 1;

–[φ&ψ]M,g = 1 iff [φ]M,g = 1 and [ψ]M,g = 1;

–[φ&ψ]M,g = 0 iff [φ]M,g = 0 or [ψ]M,g = 0;

–[φ ∨ ψ]M,g = 1 iff [φ]M,g = 1 or [ψ]M,g = 1;

–[φ ∨ ψ]M,g = 0 iff [φ]M,g = 0 and [ψ]M,g = 0;

–[φ→ ψ]M,g = 1 iff [φ]M,g = 0 or [ψ]M,g = 1;

–[φ→ ψ]M,g = 0 iff [φ]M,g = 1 and [ψ]M,g = 0;
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–[φ↔ ψ]M,g = 1 iff ([φ]M,g = 1 and [ψ]M,g = 1) or
([φ]M,g = 0 and [ψ]M,g = 0);

–[φ↔ ψ]M,g = 0 iff ([φ]M,g = 1 and [ψ]M,g = 0) or
([φ]M,g = 0 and [ψ]M,g = 1);

–[(∀vi)φ]M,g = 1 iff for every d ∈ D[φ]M,g[d/vi] = 1;

–[(∀vi)φ]M,g = 0 iff for some d ∈ D[φ]M,g[d/vi] = 0;

–[(∃vi)φ]M,g = 1 iff for some d ∈ D[φ]M,g[d/vi] = 1;

–[(∃vi)φ]M,g = 0 iff for every d ∈ D[φ]M,g[d/vi] = 0.

4. If φ has no free variables, then [φ]M,g does not depend on g,
so we may write ‘[φ]M ’, omitting g.

5. Logical consequence and logical truth are also defined in the
familiar way:

–The sentence φ is a logical consequence of the set of sentences
Γ iff for every model M , if [ψ]M = 1 for all ψ ∈ Γ, then [φ]M

= 1.

–φ is a logical truth iff it is a logical consequence of the empty
set of premises.
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• Models for L are obtained from models for L0 by adding an interpreta-
tion for P .

• A simple way to model the vagueness of P is to assume that its in-
terpretations in models M for L consist of an extension I+

M(P ) and an
anti-extension I−M(P ).

(Instead of ‘extension’ and ‘anti-extension’ one also often speaks of ‘po-
sitive extension’ and ‘negative extension’).

The extension of P in M consists of the elements of D that are clear
cases of P according to M and the anti-extension of P in M of the
elements that are clearly not cases of P .

But in addition to the extension and the anti-extesion there may be
borderline cases of P in M – elements of D that are neither clear cases
of P nor clear non-cases of P . When this is so, we say that ‘P is vague
according to M ’.
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We assume that it is always the case that I+(P )∩ I−(P ) = ∅. But the
vagueness of P according to M manifests itself in that I+(P )∪I−(P ) 6=
D. We refer to D − (I+(P ) ∩ I+(P ) 6= D) as the truth value gap of P
in M .

• Let M be a model for L. We can define truth in M in almost exactly
the same way as we did for L0. We only need an extra clause for ato-
mic formulas of the form ‘P (α)’. The standard pair of clauses is the
following:

(2) –[P (α)]M,g = 1 if [α]M,g ∈ I+(P );

–[[P (α)]M,g = 0 if [α]M,g ∈ I−(P ).

Note that the addition of this clause renders the truth definition par-
tial: [φ]M,g may de undefined.

• The partiality of the truth definition for L has consequences for the
logic generated by the definition for logical consequence).

For instance, many formulas of the form ‘φ ∨ ¬φ’ do no longer come
out as tautologies.
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• The logic generated by the truth definition (1.3) supplemented with the
clauses in (2) and the definition of logical consequence given by (1.5)
is the so-called ‘Strong Kleene Logic’.

• Does this establish that when vagueness comes into play, logic can no
longer be classical? No, not automatically. The partial models for L
we have just defined allow for other ways of defining the logical conse-
quence relation.

• A number of such ways are made available by supervaluation.
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2. The semantics and Logic of Supervaluation

Supervaluation is based on the following idea:

If P is vague in that it admits of borderline cases, its boderline cases
could be resolved one way or another and P ’s vagueness thereby remo-
ved.

That is, in conjunction with each partial model M for L we can con-
sider all possible ways in which the truth value gap of P in M can be
closed. Each of these ways gives us a ’classical’ model N for L, in which
there is no truth value gap for P and in which [φ]N,g is always defined.

• Such classical models for L, which ate like M except that all borderline
cases of P in M have been resolved, are called complete precisifications
of M .
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• Complete precisifications of a model M for L are a special case of mo-
dels for L that are sharpenings of M .

In general, a model N = < D′, I ′ > for L is a sharpening of a model
M =< D, I > (in symbols: M � N) iff (a) D′ = D; (b) for every
non-logical constant β of L0, I

′(β) = I(β) and
(c) I+(P ) ⊆ I ′+(P ) and I−(P ) ⊆ I ′−(P ).

• The truth definition for L is monotonic: truth and falsity are preserved
by sharpening:

WhenM � N , then for any formula φ and assignment g, if [φ]M,g = 1/0,
then [φ]N,g = 1/0.

• A pair < M,N >, where N is a set of complete precisifications of M ,
is called a supermodel for L.

M is called the base model of < M,N > and the members of N the
(complete) precisifications of < M,N >.
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• In a supermodel M =< M,N > ‘truth values’ can be defined in more
than one way.

i. We can define them just as before, looking only at M and ignoring
N .

ii. We can define a sentence φ as supertrue in M iff [φ]N = 1 for every
N ∈ N ; and, likewise, φ as superfalse in M iff [φ]N = 0 for everyN ∈ N .

• Like truth as defined directly on M , supertruth is in general a partial
notion.

In particular, when an atomic sentence P (c) is without a truth value
in M , it may be expected to also lack a supertruth-value.

P (c) is bound to lack a supertruth-value in N ∈ N if N contains all
formally possible complete specifications of M .

• However, all formulas that are theorems of classical logic come out as
supertrue. In that sense supertruth preserves classical logic.
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• We now have new options for defining logical consequence (besides the
definition we already gave, which only refers to M). Here are two such
options:

(3) a. Global Logical Consequence

The sentence φ is a global logical consequencesg of the set of
sentences Γ iff for every supermodel M if [ψ]M is supertrue in
M for all ψ ∈ Γ ,then [φ]M is supertrue in M.

b. Local Logical Consequence

The sentence φ is a local logical consequencesl of the set of
sentences Γ iff for every supermodel < M,N >, and every
N ∈ N : if [ψ]N = 1 for all ψ ∈ Γ ,then [ψ]N = 1.

• It is not hard to see that these two consequence relations generate the
same logic, viz. classical logic. But conceptually the two notions are
quite different.
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• The second of these definitions reflects the following intuition:

(4) Intuitive Justification of Local Logical Consequence

It may be indeterminate for some individuals whether they satisfy
the predicate P that occurs in the premise(s) and conclusion of my
argument. But what I am really interested in is whether the truth
of the conclusion is guaranteed by the truth of the premises when
such cases are resolved, no matter how they are resolved, as long
as they are resolved in the same way in premises and conclusion.

• Global Logical Consequence will be of interest to someone who thinks
that where vagueness is present supertruth is the natural notion of
truth, and that validity should therefore amount to preservation of su-
pertruth.

If you do not share the intuition that supertruth – truth no matter
how borderline cases are resolved – is the right notion of truth in the
presence of vagueness, then Global Logical Consequence will not have
much intuitive appeal either.
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• Penumbral Connections

• What can we say about which complete precisifications should be part
of a supermodel < M,N >? That depends on our perspective.

Perspective 1: The predicate P models the phenomenon of borderline
cases in a purely abstract and general way: any way of resolving the
truth value gap of P in a partial model M is admitted.

From this perspective each partial model M determines a unique su-
permodel < M,N >, that in which N is the set of all possible complete
precisifications of M .

Perspective 2: P is thought of as a proxy for any one of the actual
vague predicates found in language or thought.

These actual predicates may be subject to various constraints, which
given some particular partial model M , rule out some of the possible
complete precisifications of M .

If we do not know about what these constraints could be, the best we
can do is to admit as supermodels all structures < M,N > such that
N is some non-empty set of complete precisifications of M .
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Perspective 3: We use P to represent some particular vague predicate,
such as red, tall, cup, rain,. . .. The semantics of such predicates is often
subject to special constraints.

For instance, two color patches d and d’ may be both borderline cases
of ‘red’, but it may nevertheless be the case that d’ is redder than d.
This imposes a constraint on how these borderline cases may be resol-
ved: any precisification that puts d into the extension of ‘red’ should
put d’ into its extension as well.

In such cases, where P represents some particular vague predicate,
admissible supermodels < M,N > for a given partial model M will
reflect the resolution constraints for that predicate: the members N ∈
N are all and only those that are compatible with these constraints.

• (Fine 1975) discusses penumbral connections between pairs of vague
predicates.

Example: the adjectives ‘red’ and ‘pink’: d and d′ can be on the border-
line between ‘red’ and ‘pink, but d′ may be redder than d. So complete
precisifications N in which d is in the extension of ‘red’ while d′ is in
the extension of ‘pink’ are ruled out.
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• N.B. A formal treatment of Fine’s example requires a formal language
with more than one vague predicate. Extending L to a language with
several vague predicates is straightforward.

• For some natural language predicates the constraints they impose on
the resolution of borderline cases are fairly easy to identify.

Example: ’1-dimensional gradable adjectives like ‘tall’ or ‘heavy’.

These are governed by the following 1-dimensionality constraint:

(5) (1-dimensionality constraint)

For any two objects d and d’ within the application range of P
either d satisfies P to at least the same degree as d’ or d’ satisfies
P to at least the same degree as d.
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In (Kamp 1975) supermodels satisfying constraints like the 1-dimensionality
constraint are used to define the comparative forms of adjectives as
involving an operator Comp which turns adjectives into the 2-place
predicates that are expressed by their comparatives:

For any 1-dimensional vague predicate P the semantics of Comp(P ) is
given by:

(6) [Comp(P )(x, y)]M,g = 1 if

(i) for all N ∈ N , if [P (y)]N,g = 1, then [P (x)]N,g = 1 and

(ii) there is some N ∈ N such that [P (x)]N,g = 1 and [P (y)]N,g =
0

It can be shown that if P is 1-dimensional, then Comp(P ) defines a
strict linear order.
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• N.B. This way of analyzing comparatives has been disputed. Instead
many linguistic analyses of gradable adjectives assume that they are
not 1-place predicates but 2-place predicates, which express relations
between entities and degrees.

Another problem for the analysis of comparatives via ‘Comp’ is that
comparative relations hold not only between elements from the bor-
derline area but also between objects both of which are in the positive
extension of P (or both in its anti-extension).

To make (6) work for such objects we have to allow the semantics of
P to vary so that in some models M these objects become borderline
cases too.

Perhaps such models can be thought of as reflecting special contexts in
which the semantics of P deviates drastically from what it normally is.
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3. Piece-wise precisification

• The idea of the complete precisification of a vague predicate is obvious-
ly an idealization.

A more realistic view of how vague predicates can be sharpened is that
often they are only sharpened only bit by bit.

Complete specifications might still be thought of as virtual results, as
limits of converging sequences of piece-wise sharpenings.
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This brings us to the notion of a Precisification Structure:

(7) Def. A Precisification Structure for L is a pair < M,N >, where:

(i) M is a partial model for L;
(ii) N is a partially ordered structure of (possibly incomplete)
sharpenings of M .

(The partial ordering of N is the relation �:
N � N ′ iff N ′ is a sharpening of N or N ′ = N .

We refer to M as the base model of < M,N >.
It is convenient to assume that M itself is a member of N .

(N.B. Shapiro refers to Precisification Structures as frames.)
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• Even when a Precisification Structure contains no complete precisifica-
tions, it may generate a supermodel ‘in the limit’.

Let < M,N > be a Precisification Structure and let B be a maximal
branch of < M,N >. We can define the limit of B as follows:

I+
NB

(P ) = ∪{I+
N(P ) | N ∈ B}; I−NB

(P ) = ∪{I−N(P ) | N ∈ B}; otherwise
NB is like all the members of N .

It is easy to see that NB is a sharpening of all the models N in B and
that it is the least precise such model.

Note also that the limit of a branch can be a complete precisification
even though none of the members of the branch are.

(N.B. B is a branch of � iff it is a linearly ordered subset of �. It is a
maximal branch of � if it is a branch and there is no other branch of
� which properly includes it.)
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• A Precisification Structure < M,N > is said to generate a supermodel
iff the limit of each of its branches is a complete precisification.

• Precisification Structures with this property can be used in the seman-
tics of P in just the way we have been using supermodels. The only
difference is in how the complete precisifications come about.

(A proposal along these lines was made in (Kamp 1975).

In many applications the notion of a supermodel is problematic, whe-
ther its complete precisifications are postulated or construed as limits.)

• Can Precisification Structures also play some other role in the semantics
of P than as generators of supermodels?

The first question we must answer in this connection is: How are we to
think of what the members N of N stand for?
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One way to think of the N ∈ N is as the results of contextual modifi-
cation of the base model M .

This interpretation is closely tied to the view that context-dependence
is a key feature of vagueness:

the phenomenon of borderline cases does not only imply the freedom
of choice that individual users have to decide such cases, but also con-
textual malleability in a more general sense:

contextual adaptation can be brought about by choices that are made
by speakers but also by contextual factors that need not be within their
control.

• We will return to these questions at length.
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For now just suppose that the different members of N correspond to
different contexts of use for P .

Also suppose also that the relation � can be interpreted as a kind of
‘accessibility relation’ between contexts:

‘N � N ′’ means that a context reflected by N can develop into a con-
text reflected by N ′.

• This makes Precisification Structures look like Kripke structures:

A Kripke structure is a pair < W,R > in which W is a non-empty set
(of ‘worlds’, or ‘indices’) and R is an accessibility relation between the
members of W , and where the members of W determine the semantic
values of the expressions of some language.

Kripke structures have been extensively used in the analysis of a wide
range of logical notions and linguistic phenonema.

The formal similarity between Precisification Structures and Kripke
structures makes it tempting to employ concepts and techniques from
modal logic (in this very general sense of the term) also to the analysis
of vagueness.

We will return to this point.
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• If the members of the set N of a precision structure are to be thought
of as contexts, then an analysis along ‘modal’ lines is likely to make
vagueness a semantic phenomenon that is context-dependent in two
distinct ways:

(a) the extensions of vague predicates can vary as a function of context;

(b) the semantics of certain operators O of the language is context
dependent in that the semantic value of an expression obtained by ap-
plying O in one context may depend on the values of the expressions
to which O has been applied in other contexts.

It is important to see the difference between these two kinds of context
dependence. We cannot have (b) without (a). But we can have (a) wi-
thout (b).

• One way in which theories of vagueness that assign an important role
to context differ is just this:

Does context only affect the extensions of certain lexical predicates, or
does it also affect the semantics of logical operators? And if so, which
operators?
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Where we got so far:

1. Presentation of a model theory for a language L of
Predicate Logic with one 1-place vague predicate P

2. The semantics and Logic of Supervaluation

3. Piece-wise precisification

4. Formal versions of the Sorites

5. Accounting for the Sorites using Supervaluation Theory

6. Adding Determinateness

7. The Logic(s) of Total and Partial Semantics
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4. Formal versions of the Sorites

• One of the tasks of a semantics and logic for vague predicates is to
account for the Sorites Paradox.

• It is widely held that such an account must accomplish two things:

1. It must show either that the paradoxical argument is, contrary to
first impressions, unsound:

either it is not valid (in that it involves the application of invalid
logical principles) or else not all its premises are true.

2. It must give some kind of explanation of where the impression that
it is a sound argument comes from.
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• Formal presentations of the Sorites come in two forms.

Both forms involve a conclusion of the form P (aN) and one premise of
the form P (a0).

Here ‘a0’ and ‘aN ’ are individual constants which denote objects of
which it is unequivocally true that the first does satisfy P , whereas the
second does not.

Furthermore, we assume that a1, . . . , aN−1 are objects such that for n
= 0, . . ., N-1, an and an+1 are within the tolerance margin of P .

Two objects d and d′ are within the tolerance margin for P iff the dif-
ferences between d and d′ (if any) are irrelevant to satisfaction of P .

We express this relation formally as ’≈P .
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• The two versions differ with regard to the remaining premises.

The first version has N additional premises, each of which is a condi-
tional of the form ‘P (an)→ P (an+1)’ (again, for n = 0, . . ., N-1).

The second version is usually given with one additional premise, which
bundles the conditional premises of the first version into a single uni-
versally quantified conjunction.

What we want for the second premise is something like this:

‘(∀n)(P (an)→ P (an+1))’.

But note that this is not a well-formed formula.
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To express the universalised condition correctly we need a function f
from objects to objects which maps any object d to an object f(d) such
that d and f(d) are within the tolerance margin for P .

Moreover, there must be an object d and a natural number N such that
P (d) is true and P (fN(d)) is false.

Given these properties of f we can state the paradoxical argument as
in (8.b).

An alternative for the second form is given in (8.c).

This form makes use of the general tolerance principle in (8.d).
An additional third premise is necessary to state that arguments and
values of f are always within their P -margin of tolerance.
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(8) a. P (a0)
P (a0)→ P (a1)
P (a1)→ P (a2)
...
P (aN−1)→ P (aN)

Therefore:

P (aN)

b. P (a0)
(∀x)(P (x)→ P (f(x)))

Therefore:

P (fN(a0))

c. P (a0)
(∀x)(∀y)(≈P (x, y)→ (P (x)→ P (y)))
(∀x) ≈P (x, f(x))

Therefore:

P (fN(a0))

d. (∀x)(∀y)(≈P (x, y)→ (P (x)→ P (y)))
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5. Accounting for the Sorites using Supervaluation Theory

• The semantics and logic of P in terms of supermodels and the local
definition of logical consequence give us some tools to deal with the
Sorites Paradox .

• We start with version (8.a).

First, note that in any supermodel < M,N > such that P (a0) is true
in M and P (aN) is false in M it must be the case that:

for any complete precisification N ∈ N there is some n ≤ N-1 such
that an is in IN(P ) and an+1 is not.

This means that for each N ∈ N one of the conditional premises is
false. So there is no N ∈ N in which the premises are all true. (And so
the conjunction of the premises is superfalse in < M,N >, just as the
conclusion P (aN).)

Since this holds for every supermodel, the conclusion P (aN) is a logical
consequence of the premises, by default. But the argument cannot be
sound.
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• Second, the impression that the premises of (8.a) are true while the
conclusion is false can be given some kind of explanation along the fol-
lowing lines.

Consider again a supermodel < M,N > such that P (a0) is true and
P (aN) false in M .

Take any conditional premise ‘P (an)→ P (an+1)’.

Let S(n, n+ 1) be the set of those N ∈ N such that an is in IN(P ) and
an+1 is not.

So S(n, n+ 1) is the set of the N ’s in which the borderline between the
P ’s and the non-P ’s runs between an and an+1.

34



But there are many, many other ways in which the borderline can be
drawn, viz. between ai and ai+1 for any i 6= n. These other ways corre-
spond to precisifications N ∈ N that are not in S(n, n+ 1).

Surely this second set, N \ S(n, n+1), is much bigger than S(n, n+1).
So, loosely speaking, ‘P (an)→ P (an+1)’ is ‘very nearly true’ in
< M,N >, in that it is true in the vast majority of its complete preci-
sifications.

• An explanation along these lines of why a Sorites argument in the form
of (8.a) might strike us as valid was suggested many years ago by Rich
Thomason.

Thomason’s suggestion was based on the supervaluation account of
(Kamp 1975).

It makes use of a feature of the models proposed there that we have
not yet spoken about.
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• (Kamp 1975) contains a critical discussion of Fuzzy Logic, pointing out
that this approach has a fundamental problem with stating the seman-
tics of the binary connectives (among them ‘and’ and ‘or’).

As an approximation of what Fuzzy Logic seems to want, the paper
offers a way of assigning ‘credibility values’ to sentences of L in super-
models < M,N > via a probability function over N .

For the supermodels under discussion a plausible probability function
will assign only a small value to any of the sets S(n, n+ 1) and a cor-
respondingly high value to their complements N \ S(n, n+ 1).

Such a probability measure assigns to all conditionals ‘P (an)→ P (an+1)’
a very high value: either 1 or else close to 1.
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This explains why an argument of the form (8.a) may look like a (pret-
ty) sound argument: it is valid and all its premises are either true or
nearly true.

What this impression overlooks is although the premises are in a cer-
tain sense all fully or nearly true, this is not so for their conjunction.

• There is another aspect to these considerations, which is proof-theoretic
rather than semantic:

To obtain the conclusion of (8.a) from its premises all we need is a
series of applications of the rule of Modus Ponens.

What could be wrong with a series of applications of that (widely used
and deeply trusted) inference rule? Can a string of such rule appli-
cations possibly lead from nearly true premises to an radically false
conclusion?

The answer is ‘ yes, it can!’
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Within Fuzzy Logic, and also in other logics that employ some notion
of ‘degree of truth’, M.P. is not strictly valid;

when M.P. is applied to two premises A and A→ B, neither of which
is fully true, then the result B may have a value that is less than the
values of either of the premises.

In this way successive applications of M.P. may lead from nearly true
premises eventually to a conclusion that is as far from truth as you like.

• This is the essence of the accounts of the Sorites argument that have
been given by advocates of Fuzzy Logic and other degree logics.

To repeat: None of the premises of the argument is actually false. Ho-
wever, some of them are not fully true, but only close to true.

But the relevant logic is not classical: classically valid inference rules,
which are guaranteed to preserve full truth, do not necessarily preserve
other degrees of truth. And that is what’s wrong with the argument in
(8.a).
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Within Fuzzy Logic you should not apply a rule like M.P. without
checking how much you may have thereby lowered the ‘fuzzy truth va-
lue (or ‘degree of truth’). The illusion that the argument is valid comes
from forgetting that there is this danger as soon as one departs from
the 100% true.

• Note that this is a quite different way of dealing with the Sorites than
the one involving supermodels and locally defined logical consequence.

It rests on adopting a non-classical logic, rather than keeping classical
logic intact, but arguing for the impossibility of simultaneously satis-
fying all premises.

• In view of our commitments to other aspects of vagueness in these lec-
tures we will not pursue the degree.theoretical approaches any further.
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Account of (8.b).

In any complete precisification N of a supermodel < M,N > in which
P (a0) is true and P (aN) false the second, universally quantified premise
is false.

For in order for it to be true in N , all its instances to constants an

(with 0 ≤ n ≤ N-1) must be true.

But that is impossible: since N must verify P (a0) and falsify P (aN), it
must draw a line between some an and its successor. So it will falsify
‘P (an) → P (an+1)’, and with that univerdal quantification of which
this is an instance.

• Second, it is easy to fall victim to the impression that the second pre-
mise should be true, or at least nearly true.

That illusion comes from confusing the truth or near-truth of the in-
stances of a universal generalization with the truth or near-truth of
the universal generalization itself: even if its instances are all close to
true, the generalization, which is equivalent to the conjunction of all
its instances, may be false.
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• Account of (8.c).

Let us assume that the supermodel < M,N > verifies both P (a0) and
(∀x) ≈P (x, f(x)) (in the strong sense that they are true in M); and
let P (fN(a0) be false in M .

Then the second premise must be false in every N ∈ N .

For N must falsify at least one conditional of the form ‘P (fn(a0) →
P (fn+1(a0)’ (with 0 ≤ n ≤ N-1).

And since ‘≈P (fn(a0), f
n+1(a0))’ is true in N (as an instance of the

third premise, which is true in M and thus in each of its complete pre-
cisifications), the following instance of the second premise is false in N :

‘≈P (fn(a0), f
n+1(a0))→ (P (fn(a0))→ P (fn+1(a0)))
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Since this holds for all N ∈ N , the second premise is superfalse in
< M,N >, just as we concluded above for the second premise of (8.b).

• The impression of the soundness of (8.c) is accounted for as before:

the second premise (now the Tolerance Principle) strikes us as true or
nearly true because we confuse the near-truth of the universal quanti-
fication with the near-truth of its instances.
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• How good an account of the various forms of the Sorites Paradox is
this?

Judgments seem to differ on this score. Some are unconvinced because
they feel that the conditional premises of (8.a) and the second premises
of (8.b) and (8.c) really are in an important sense true; this isn’t just
an illusion!

Aeguably the supervaluation story fails to do justice to that intuition.

• But note well: For someone who resists a solution to the Sorites ac-
cording to which at least one premise of any Sorites argument is false
there are only two options:

(i) the logic used in arriving at the conclusion is at fault.

As we have seen in connection with (8.a), this position entails at a mi-
nimum giving up Modus Ponens. Some other inference principles may
be expected to go by the wayside too.
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(ii) Sorites arguments can be sound, in the sense that (a) they are valid
and yet (b) their conclusions can be false while their premises are true.

According to this view the relation between the world and the way we
think and reason about it is truly paradoxical:

Valid principles of reasoning can lead from true premises to false con-
clusions; that’s life and we just have to do the best we can not to stay
clear of such traps.

But then, what can we do to avoid those traps?
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6. Adding Determinateness

• All the models we have thus far discussed – partial models, super-
models and Precisification Structures – assign to P a semantic value
consisting of three parts: extension, anti-extension and truth value gap.

But as things stand, this tripartite division is not expressible within L
itself.

In particular, we cannot express that a is in the truth value gap of P .
Just try!

A first attempt might go like this:
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‘P (a)’ expresses that a is in the extension of P , and ‘¬P (a)’ that a is
in the anti-extension of P . So if a is in the truth value gap of P – that
is, if neither of these two cases applies – then both of these formulas
must be false, and thus their negations must be true:

(9) ¬P (a) & ¬¬P (a)

But of course this won’t do as an expression of what we want. According
to the semantics of ¬ we have given, (9) is just a plain contradiction.

What we need is a ‘weak’ negation ∼, such that ∼ φ is true if φ is
either false or undefined.

But so far our language L doesn’t have such a negation. And adding
such a negation to L has the disadvantage that it makes the semantics
non-monotonic.

(For instance, if N ≺ N ′ and a is in the extension of P in N ′ but not in
the extension of P in N , then ∼ P (a) will be true in N but false in N ′.)
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• Another way to obtain the expressive power needed to express that a
is in the truth value gap of P is to add a ‘determinateness operator’ 4.

4 is a 1-place sentence operator, like ¬ and ∼, and it expresses that
its operand is (‘definitely’) true. In other words:

4φ is true if φ is true and false if φ is either false or undefined.

• With the help of 4 we can express that a is in the truth value gap of
P as in (10):

(10) ¬4 P (a) & ¬4 ¬P (a)

From what has been said so far it would seem that 4 destroys mono-
tonicity in just the same way that ∼ does.

But there is a way of defining the semantics of 4 that preserves mo-
notonicity:

We say that 4φ is true at any N of our model structure iff φ is true in
the base model M .
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• In connection with supermodels this is all we can want: Both for the
base model M and for all complete precisifications N we get the truth
clause:

(11) a. [4φ]M/N,g = 1 if [φ]M,g = 1

b. [4φ]M/N,g = 0 if either [φ]M,g = 0 or [φ]M,g is undefined

Note well:

(i) Definition (11) relies on the partial truth definition for L in the
partial model M .

(ii) (11) has the arguably counterintuitive effect that in certain com-
plete precisifications N 4φ is true and at the same time φ is false.

For those who see the role that complete precisifications of supermodels
play in the characterization of truth and validity merely as a technical
device, (ii) need not be a ground for worry.
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• For Precisification Structures the matter is different.

Let us assume again that the members N of N play the part of, or
correspond to, different contexts of use.

Then we may want to be able to express facts about the truth value
gaps of P not only in M but also in these N ’s.

The definition of 4 in (11) does not give us this. And an operator that
does will inevitably lead to non-monotonicity.

• Note that from the formal perspective of modal logic 4 functions as a
necessity operator satisfying the axioms of S5. This entails in particu-
lar, iteration of 4 is redundant.
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• Determinateness and Higher Order Vagueness

Let L’ be the language L + (4).

According to the semantics for 4 given in (11) all formulas of L’ that
are of the form 4φ (as well as all logical compounds of such formulas)
are bivalent.

This is so in particular for all formulas of the form 4P (x); and that
means that the language L’ treats the separation between extension
and truth value gap as sharp:

There are no a such that4P (a) is indeterminate (in the sense of lacking
a definite truth value).

(The separation between truth value gap and anti-extension is treated
as sharp in the same sense.)
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• From the earliest formal treatments of vagueness this is an aspect of
the semantics that (11) assigns to4 that has been seen as problematic.

• The problem is addressed explicitly in (Fine 1975). Fine shows how to
formulate a model-theoretic semantics for L’ in which the borderline
between extension and truth value gap and that between truth value
gap and anti-extension are also fuzzy.

Furthermore, in his formal treatment the borderline between the ex-
tension and the first of these second order gaps can be fuzzy as well;
and so on, and on.
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• On the one hand such considerations may seem compelling: if the-
re is a borderline area between extension and anti-extension to begin
with, what plausibility is there in the assumption that there are sharp
boundaries that separate this borderline area from extension and anti-
extension?

But on the other hand it is hard to see what kind of positive evidence
can be adduced for higher order borderline areas.

Our intuitions about borderline cases of a predicate P of our language
(such as ‘red’ or ‘bald’ or ‘heap’) are often reasonably tangible:

we are often in situations where we do not know whether some person
a should be described as bald, and where we feel that our not knowing
what to say isn’t because of a lack of actual information about a, or
because we do not know enough about the meaning of ‘bald’. In such
a situation we are inclined to say that a is a borderline case of ‘bald’
(or, put slightly differently, that ‘a is in the truth value gap of ‘bald”).

But can we make out a meaningful distinction between being confi-
dent in classifying a as a borderline case of ‘bald’ and hesitating over
whether a should be classified as a borderline case of baldness or as a
definite case of baldness?
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• Some feel that attributing to speakers such further powers of discrimi-
nation in relation to such classification questions does not make sense,
or that these powers are too unreliable to serve as a basis for theoreti-
cally tenable distinctions.

It is also possible to see such discriminations as not pertaining to the
semantics of the predications involved, but to certain pragmatic aspects
of the use of those predicates.

Others have argued that at least second order vagueness can be ma-
de sense of, but that the distinctions involved are quite different from
those relevant to first order vagueness.

For instance, the question whether a is a second order borderline case
of ‘bald’ might depend on the general dispositions of members of the
speech community towards classifying a as bald, or towards classifying
a as bald in various contexts.

When one thinks of second order vagueness as involving criteria that
are very different from those for first order vagueness one may be pre-
pared to admit second order vagueness without seeing any reason for
accepting third order vagueness (let alone higher orders of vagueness).
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7. The Logic(s) of Total and Partial Semantics

• The history of formal logic has for the most part been the history of
what constitutes a logically valid inference.

• The fundamental insight on this point was Aristotle’s: arguments are
logically valid in virtue of their form.

• That also defined the agenda for formal logic:

(i) articulate the pertinent notion or notions of form and

(ii) identify which argument schemata (according to the chosen notion
of form) qualify as valid.

• Throughout the time from Aristotle to Frege some (but not much) pro-
gress was made in the discovery of new notions of form.

Efforts were made to determine which of the argument schemata ge-
nerated by the different notions of form are valid schemata but the
efforts rarely rose above the level of item-by-item classification, usually
with some kind of argumentation why certain schemata were or weren’t
valid.

54



• Frege achieved a breakthrough on both fronts:

(i) he defined a new notion of form (made explicit by the syntax of his
Begriffsschrift) and (ii) he explicated validity in terms of formal deduc-
tion:

an argument is valid if its conclusion can be obtained from its premises
through the (often iterated) application of a handful of formally defined
inference principles.
(Given the immense expressive power of his new notion of form, the
number of principles is strikingly small).
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• Semantics, in any but an intuitive and informal sense, does not come
into this picture.

(An arguable exception is Venn’s account of validity and invalidity of
Aristotelian syllogisms in terms of the diagrams named after him.)

In particular, an explicit semantics for Predicate Logic (the direct de-
scendant of the Begriffsschrift) came only later.

Crucial in this development:

(i) The work of Löwenheim and Skolem

(ii) Tarski’s work on truth and logical consequence in the thirties

(iii) Tarski’s development (in the years following World War II) of
model theory as a branch of mathematical logic.

(iv) A hallmark of this development was Henkin’s model-theoretic com-
pleteness proof for first order predicate logic.
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• One of the most important benefits of model-theoretic semantics is that
it gives a conceptually clear notion of logical validity:

We have a strong intuition that a logically valid argument should pre-
serve truth:

Whenever, and for whatever reason, the premises of the argument are
true, then so, of logical necessity, must be the conclusion.

• Within model theory this intuitive notion of validity as truth preser-
ving can be precise in the familiar way:

for premise set Γ and conclusion B, B is defined to be a logical conse-
quence of Γ iff B is true in every model in which the sentences in Γ are
true.
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• This definition is immensely useful in that it captures the conceptual
criterion for validity irrespective of how complex the premises and con-
clusion may be and irrespective of whether one really ‘understands’ the
premises or conclusion or has any direct way of recognizing that premi-
ses and conclusion stand in a formal relation that makes the argument
valid.

• The value of a completeness proof for first order logic is that it shows
us how the semantic notion of logical consequence can be made ‘ope-
rational’:

if an argument is semantically valid, then its conclusion can be obtained
from its premises by successive applications of some explicitly specified
set of inference rules, which operate according to syntactic principles
on syntactic forms;

if the argument is not valid, then no such derivation is possible.
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• The methodology to which this has led can be summarized as follows:

(a) define a formal language in purely syntactic terms,

(b) provide a model-theoretic semantics for it that assigns the intui-
tively right truth conditions to its formulas; and then

(c) define an algorithmic proof method for that language, with a com-
pleteness proof to establish that the algorithm can be used to verify
all instances of logical consequence as defined by the semantics, and no
others.

This method has proved immensely fruitful. It has been applied to vari-
ants of predicate logic such as Free Logic, to subsystems of the predicate
calculus such as Equational Logic, to a wide range of modal logics, in-
cluding tense logics, multi-agent epistemic logics, dynamic logics and
other applications in computer science and so forth.)
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• The method has also been applied to the ‘logic of vagueness’.

In fact, we have done a little bit of that here, when ‘showing’ that
classical logic is a viable logic for languages with vague predicates (by
defining logical or global consequence as local preservation of truth in
supermodels).

We also implicitly referred to existing completeness proofs when we
claimed that the logic of partial models with the truth definition for L
given in (1) is Strong Kleene (or Weak Kleene, depending on how we
read this definition in the modified setting of partial logic).

• But as soon as we are dealing with partial truth definitions, the seman-
tic method becomes problematic.
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One difference is this: For languages with a bivalent model-theoretic
semantics there are a number of equivalent ways in which logical con-
sequence can be defined:

(i) as preservation of truth;

(ii) as the absence of counterexamples (models in which all of the
premises are true and the conclusion is false), or

(iii) as the converse of truth preservation (whenever the conclusion is
false so must be at least one of the premises).

When there is bivalence, these definitions are extensionally equivalent,
and this strengthens our conviction that the relation they all define is
the intuitively right one.

• When truth definitions are partial, these equivalences no longer hold.

For instance, if we replace the definition of logical consequence given
earlier by its converse, the generated logic is no longer Strong Kleene.
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This problem gets amplified when we move to ‘multi-point’ structures
such as supermodels or Precisification Structures.

We already saw that supermodels suggest at least three different ways
of defining logical consequence:

(a) the one that is directly based on the partial truth definition for M
yields the Strong Kleene logic;

(b) the global definition, which requires preservation of supertruth,
and

(c) the local defintion, which requires local preservation in each of the
different complete precisifications.

The last two, we noted give both rise to the same logic, viz. classical
logic).

Moreover, when we move from supermodels to Precisification Structu-
res, possibilities multiply further. We will see examples of this later.
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• Because of the many different ways in which the model-theoretic se-
mantics for languages with vague predicates can be set up, and because
some of these ways allow for a range of different equally plausible ways
of defining logical consequence, the landscape of ‘vagueness logics’ has
become increasingly complex.

There now exist a number of studies that compare these different lo-
gics and provide ways of ordering and classifying the different opti-
ons [a small selection of references: ((Varzi 2007), (Asher, Dever and
Pappas 2009), (Cobrero, Egre, Ripley and van Rooij 2012))].

• Because of time limits we have had to abandon a more thorough pre-
sentation of these and other logical results about vagueness.

But we will come back to questions of logic now and then, mostly in
connection with the Sorites Paradox.
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