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Logic and CogSci?

Question
What can logic do for CogSci, and vice versa?



Marr’s levels of explanation

1. computational level:
I problems that a cognitive ability has to overcome

2. algorithmic level:
I the algorithms that may be used to achieve a solution

3. implementation level:
I how this is actually done in neural activity

Marr, Vision: a computational investigation into the human representation and processing of
the visual information, 1983
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Between computational and algorithmic level

Claim
Logic can inform us about inherent properties of the problem.

Level 1,5 Complexity level:
I complexity of the possible algorithms

Example
The shorter the proof the easier the problem.

Geurts, Reasoning with quantifiers, 2003

Gierasimczuk et al., Logical and psychological analysis of deductive mastermind, 2012

Example
The easier the algorithm the easier quantifier verification.

Szymanik & Zajenkowski, Comprehension of simple quantifiers, 2010
More: 13.45 @ TLS
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Logic and social cognition

1. Higher-order reasonings: ‘I believe that Ann knows that Ben thinks . . . ’
2. Interacts with game-theory
3. Backward induction: tells us which sequence of actions will be chosen

by agents that want to maximize their own payoffs, assuming common
knowledge of rationality.

4. BI games have been extensively studied in psychology
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Matrix game
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Hedden & Zhang What do you think I think you think?, 2002



Marble Drop Game

Meijering et al., The facilitative effect of context on second-order social reasoning, 2010



MDG performance . . .






MDG performance gets better






BI algorithm

At the end of the game, players have their values marked. At the
intermediate stages, once all follow-up stages are marked, the player to
move gets her maximal value that she can reach, while the other, non-active
player gets his value in that stage.



Project

1. What is the complexity of the computational problem?
2. What makes certain MDG trials harder than others?

3. What is the connection with logic?
4. What is the connection with psychology?

↪→ human reasoning strategies
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BI is computable in polynomial time

I Breadth-first search.

I Therefore, BI ∈ PTIME.

Question
Is BI PTIME-complete?

Question
Descriptive complexity analysis of BI?

Van Benthem & Gheerbrant, Game solution, epistemic dynamics and fixed-point logics, 2010
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Preliminaries: reachability

Question
Is t reachable from s?

s

t

Theorem
Reachability is NL-complete.
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Alternating graphs

Definition
Let an alternating graph G = (V, E, A, s, t) be a directed graph whose
vertices, V , are labeled universal or existential. A ⊆ V is the set of
universal vertices. E ⊆ V × V is the edge relation.

A

E E

A A

A



Reachability on alternation graphs

Definition
Let G = (V, E, A, s, t) be an alternating graph. We say that t is reachable
from s iff P G

a (s, t), where P G
a (x, y) is the smallest relation on vertices of G

satisfying:
1. P G

a (x, x)

2. If x is existential and P G
a (z, y) holds for some edge (x, z) then P G

a (x, y).
3. If x is universal, there is at least one edge leaving x, and P G

a (z, y) holds
for all edges (x, z) then P G

a (x, y).



Is there an alternating path from s to t?

s, A

E E

A A

t, A



Reachability on alternating graphs is PTIME-complete

Definition
REACHa = {G|P G

a (s, t)}

Theorem
REACHa is PTIME-complete via first-order reductions.



Corollary on competitive games

Observation
Given G and s, REACHa intuitively corresponds to the question:
‘Is s a winning position for the first player in the competitive game G?’

Corollary
BI for competitive games is PTIME-complete.



Extensive form game graphs

Definition
A two player game G = (V, E, V1, V2, f1, f2, s, t) is a graph, where V is the
set of nodes, E ⊆ V × V is the edge relation (available moves). For i = 1, 2,
Vi ⊆ V is the set of nodes controlled by Player i, and V1 ∩ V2 = ∅. Finally,
fi : V −→ N assigns pay-offs for Player i.



BI accessibility relation

Definition
Let G be a two player game. We define the backward induction accessibility
relation on G. Let P G

bi (x, y) be the smallest relation on vertices of G such
that:
1. P G

bi (x, x)

2. Take i = 1, 2. Assume that x ∈ Vi and P G
bi (z, y). If the following two

conditions hold, then also P G
bi (x, y) holds:

2.1 E(x, z);
2.2 there is no w, v such that E(x, w), P G

bi (w, v), and fi(v) > fi(y).



And now, is s Bi-accessible from t?

s, 2

1 1

2 (4, 5)

t, (5, 6)



BI decision problem

Definition
REACHbi = {G|P G

bi (s, t)}

Theorem
REACHbi is PTIME-complete via first-order reductions.



Is it interesting?

I Cobham-Edmonds thesis: PTIME = tractable

I PTIME-complete problems are the hardest among PTIME.
I Difficult to effectively parallelize.
I Difficult to solve in limited space.
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Marble Drop Game



MDG decision trees

s,1

(t1, t2) t,2

(s1, s2) u,1

(p1, p2) (q1, q2)

l r

l r

l r

Definition
G is generic, if for each player, distinct end nodes have different pay-offs.
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Question

Question
How to approximate the complexity of a single instance?



Alternation type

Definition
Let’s assume that the players strictly alternate in the game. Then:
1. In a Λi

1 tree all the nodes are controlled by Player i.
2. In a Λi

k tree, k-alternations, starts with an ith Player node.

s,1
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Figure: Λ1
3 -tree
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Alternation hierarchy

Conjecture
For every i, j ∈ {1, 2}, the computational complexity of REACHa for all
Λi

n+1 graphs is greater than for all Λj
n graphs, and all Λi

n graphs are of the
same complexity.

↪→ corresponds to logarithmic hierarchy for the competitive case
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Subjects strategies

To explain eye-tracking data: forward induction with backward reasoning

Definition
If T is a generic game tree with the root node controlled by Player 1 (2) and
n is the highest pay-off for Player 1 (2), then T− is the minimal subtree of
T containing the root node and the node with pay-off n for Player 1 (2).



Subjects strategies

To explain eye-tracking data: forward induction with backward reasoning

Definition
If T is a generic game tree with the root node controlled by Player 1 (2) and
n is the highest pay-off for Player 1 (2), then T− is the minimal subtree of
T containing the root node and the node with pay-off n for Player 1 (2).



Λ1
3 trees
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Figure: Two Λ1
3 trees.



T−-example
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Alternations × pay-offs

Conjecture
Let us take two MDG trials T1 and T2. T1 is easier than T2 if and only if
T−1 is lower in the tree alternation hierarchy than T−2 .

↪→ to be checked with the eye-tracking data
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Logic

I Describing agents’ internal reasoning.
I Define modal/alternation depth of formulas.
I Show correspondence with Λi

n-hierarchy.
I Build proof-system.
I Define proof-depth that corresponds to the reasoning difficulty.
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Thanks!



Example

A proof:
1. turn2 ∧ 〈2〉(u2 = 0 ∧ u1 = 2) ∧ 〈2〉(u2 = 2 ∧ u1 = 1) ∧ (2 > 1) (premise)

2. turn2 ∧ 〈2〉(u2 = −1 ∧ u1 = −1) ∧ 〈2〉(u2 = 1 ∧ u1 = 4) ∧ (2 > 1) (premise)

3. (u2 = 2 ∧ u1 = 1) (from 1)

4. (u2 = 1 ∧ u1 = 4) (from 2)

5. (u1 = 1 ∧ u2 = 2) (from 3)

6. (u1 = 4 ∧ u2 = 1) (from 4)

7. turn1 ∧ 〈1〉(u1 = 1 ∧ u2 = 2) ∧ 〈2〉((u1 = 4 ∧ u2 = 1) ∧ (4 > 1) (from 5, 6)

8. (u1 = 4 ∧ u2 = 1) (from 2) (from 7)


